

F. Bedeschi INFN-Pisa ITALY

Results on Ti/SS transitions

- Only technologies which apply directly to tubes
 - Results on small tubes (1-2") small savings
 - Plans on larger tubes (240 mm) large savings

He vessel to 2-phase line

Allows making 2-phase line totally SS including all bellows

Technologies explored

- Silver loaded brazing in Argon
 - DG Technology (Italy)
 - 2 samples made
 - Conflicting results being understood

- Explosion bonding of tubes
 - Sarov, Russia (through JINR)
 - Excellent results (see next slides)

Explosion bonding (1)

- Leak check results:
 - ► 10 x 1.5" tubes tested
 - ➤ Temperature cycles:

■ 5 cycles dipping in LN₂ followed by fast heating with heat gun

Explosion bonding (2)

Summary table He leak test performance

Sample number	Vacuum level [mbar]	Leak rate background [atm-cc/sec]	He-leak rate after thermal cycles [atm-cc/sec]
1	$< 5 \times 10^{-4}$	0.4×10^{-10}	0.9×10^{-10}
3	$< 5 \times 10^{-4}$	$0.8-0.9 \times 10^{-10}$	No variation
4	$< 5 \times 10^{-4}$	$2.4-2.5 \times 10^{-10}$	No variation
5	$< 5 \times 10^{-4}$	3.7×10^{-10}	No variation
6	$< 5 \times 10^{-4}$	0.1×10^{-10}	No variation
7	$< 5 \times 10^{-4}$	$0.1-0.2 \times 10^{-10}$	No variation
8	$< 5 \times 10^{-4}$	$0.8-1.0 \times 10^{-10}$	No variation
9	$< 5 \times 10^{-4}$	$0.3-0.5 \times 10^{-10}$	No variation
10	$< 5 \times 10^{-4}$	3.1×10^{-10}	2.1×10^{-8}

Explosion bonding (3)

- Some of these 1.5" samples will be sent to Fermilab this month for testing at 2 K with 3rd harmonic cryostat
- Russian are making ~ 20 x 2" samples to be used in Type 4 ILC cryomodules. Expect first samples soon.

Larger Ti-SS transitions (1)

Brazing or explosion bonding

Explore possibility of SS He-vessel

Made parts for test using both explosion bonding and brazing technologies

Nb-SS brazing may be another possibility

Larger SS-TI transitions (2)

- Study bonding induced magnetization levels
 - Hope for KEK design inner magnetic shield
 - ► Measured 1.5" tubes
 - Results still "raw" due to poor setup
 - Indication is that fields $< 5 \mu T$ are typical, but observe large variations
 - Improvements possible with different shock absorber materials

