for the Simple Highest Gradient Operation

 Grouping Concept for Scattered Cavity Gradient.
 Fixed Coupling.
 Required Coupler Power Capacity.

Operating Condition in ILC - ML

- 26 Cavities are Driven by One Klystron.
- Scatter of Cavity Gradient Performance.
- Design Maximum Klystron Power is
 8 MW + Feed-back Margin (15 %).
- Maximum Pulse Width is 1.6 msec.
- Cavities above 150 GeV are used in Deceleration Mode, also.
 Lower Beam Current Operation.

Highest Gradient Operation

Gradient

Highest Gradient Operation

Error Souses of Operating Gradient

Error Souse	Error	Effect on Energy Gain	
Input Coupling	15%	+1.9, -2.3%	Fixed
Geometric +			
Field Flatness			
Power Dividing Ratio	2%	+1.5, -1.6%	Fixed
Input Power Phase	3 deg.	-0.14%	Fluctuation
Lorentz Detuning Compensation Error	50 Hz 13 deg.	-5.1%	Some Fluctuation

DLD Compensation Error

Maximum Lorentz Force detuning compensation results

Vector Sum Control

Vector Sum Control

Highest Gradient Operation

Gradient

Parameter Setting for Flat-Top

Cavity Voltage

at the CW Limit

$$\vec{V} = \left[2\sqrt{P_g\left(\frac{R}{Q}\right)Q_o\frac{\beta}{\left(1+\beta\right)^2}}\exp(j\theta) - I_b\left(\frac{R}{Q}\right)Q_o\frac{1}{1+\beta}\right]\cos\psi\exp(j\psi)$$

Feedback works fine.

Cavity Voltage

During Build-up

$$\vec{V} = V_d \left[1 - \exp\left(-\frac{t}{T_F}\right) \exp\left(j\frac{\tan\psi}{T_F}t\right) \right] \cos\psi \exp\left\{j(\theta + \psi)\right\}$$
$$V_d = V_g = 2\sqrt{P_g \left(\frac{R}{Q}\right)Q_0 \frac{\beta}{(1+\beta)^2}}$$
$$\vec{V} = \vec{V}_{FlatTop} \quad \text{at Beam Timing } T_e = T_F \ln\frac{1+\beta+\beta_b}{\beta_b}$$

Sendai GDE, 2008/3/4, S.Noguchi

12

Cavity Grouping Concept

- Install the Cavities having the same Maximum Gradient into the same Cryostat.
- Drive the same Gradient Cryomodules by one Klystron.
- Combine a high Gradient module with two other low Gradient Modules.

Cavity Grouping

Gradient Reduction & Tuning in Grouped Cavities

No Tuning
Power Tuning
Coupling Tuning
Power & Coupling Tuning
DLD Compensation Error is not Included.

Error Souses of Operating Gradient

Error Souse	Error	Effect on Energy Gain	
Input Coupling	15%	+1.9, -2.3%	Fixed
Geometric + Field			
Flatness			
Input Power	2%	+1.5, -1.6%	Fixed
Input Power Phase	3 deg.	-0.14%	Fluctuation
Lorentz Detuning Compensation Error	50 Hz 13 deg.	-5.1%	Some Fluctuation

No Tuning

- Average Gradient is 1.5 MV Lower.
- 4.5 % costs 180 MILC

Cost Comparison

ML costs 4000 MILC

1.0 MV bin Size

	Energy	Extra	Devise	Total		
	Reduction	Cost	Cost	Cost-Up		
No Tuning	- 4.5 %	180	0	180		
Full Tuning	0	0	40 + 50	90		
Coupling	- 1.8 %	72	40	112		
Power	- 0.9 %	36	50	86		

Coupler Acceptance Test Parameters

Maximum Operating Power
 350 kW x 1.15 = 400 kW

Test Parameter (Example)
 1.0 MW, 1.6msec.
 1.7 MW, 0.3msec.

Summary

- Cavity Grouping Scheme is Proposed.
 Power Effective, Small Tuning Range
 & Less DLD Effect.
- If we use this scheme, and assume the following number, the coupling tune-ability may be not cost effective.
 Coupling Error : ±15 %
 - Power Distribution Error : \pm 2 %

 Input Coupler must have a capacity of 400 kW.
 Precise Evaluation of cost performance is Necessary. Sendai GDE, 2008/3/4, S.Noguchi

Construction Schedule									
	0	1	2	3	4	5	6	7	8
Tunnel Construction									
Cavity Package		600	1000	1200	1200	1200			
Input Coupler		600	1000	1200	1200	1200			
Cryo-module Assembly			80	150	150	150	70		
Installation with Grouping						300	300		
System Commissioning									
Beam Commissioning									
		Sendai G	DE, 2008/	3/4, S.Nos	guchi				41

