

Electron Reconstruction Study in LDC Model

Based on FullLDCTracking andPandoraPFA -

for
Hengne Li
LAL Orsay

Objective and Work Flow
Simulation / Data Samples
FullLDCTracking
PandoraPFA Clustering and PFA
Cut Based Electron Identification
Conclusion / Outlook

Introductory Remarks

- Electrons will occur in many final states of the physics channels envisaged to be studied at the ILC
- (As will be shown) it's correct reconstruction poses maybe the biggest challenge to the capabilites of our detectors and our algorithms
- Electron reconstruction is therefore one of the key ingredients to the optimization studies for and beyond the LOIs

Objective and Work Flow

- Objective:
 - Provide good electron data sample for Higgs Recoil Mass Study (ee->ZH->eeX)
- Work Flow

Simulation / Data Samples

- Simulation
 - Mokka,
 - LDC01Sc Model, with Sit01 (instead of Sit00)
 - Particle Gun,
- Data Samples
 - e-, mu-, pi-
 - 10GeV, 30GeV, 50GeV, 70GeV, 90GeV
 - □ ⊖ Uniform Smearing:
 - Barrel Only: |cos(⊕)| ∈ (0, 0.819); avoiding FTD
 - Barrel+Endcap: $|\cos(\theta)| \in (0, 9825)$
 - 1000 Events Each

Tracking Quality

Bremsstrahlung Effect

Decreases the quality and efficiency of electron tracking

Tracking Quality

Results for 30 GeV Electrons

resolution of 1/P, ϕ and Θ achieved 5.8x10⁻⁵ (1/GeV), 6.59x10⁻⁵ (rad) and 4.39x10⁻⁵(rad), respectively.

Tracking Quality

Resolution

- □ e.g. E > 30 GeV, Barrel
 - $\sigma(1/P) < 6x10^{-5} (1/GeV)$
 - $\sigma(\Theta) < 0.05 \text{ mrad}$
 - $\sigma(\phi) < 0.07 \text{ mred}$

Discussion on Tracking Quality

- Fraction of electrons with at least one correctly Linked LDCTrack
 - □ Barrel Only: ~95%

- Because of bremsstrahlung, more LDCTracks reconstructed than the number of initial electrons.
- e.g. for 1000 electrons with momentum of 30 GeV, barrel region
 - 1072 LDCTracks reconstructed
 - 934 electrons with only one LDCTrack (which is correctly linked)
 - remaining 138 LDCTracks belong to the remaining 65 electrons.
 - Mostly, (~53 electrons), due to SiTracks and TPCTracks cannot be linked together by Kalman Filter after photon radiated
 - rarely, (~9 electrons), due to more than one TPCTracks reconstructed in case that photon radiated within TPC,
 - Photon Conversion negligable (~3 electrons)

Clustering and PFA Quality

Results for 30GeV Electrons

Energy Resolution and Efficiency

Resolution

Barrel Only: $\alpha = 17.6\%$

□ Barrel+Endcap: α =19.3%

Efficiency

 \square $N_{PFOs\,Reconstructed}/N_{Initial\,Primary\,Electrons}$

□ Barrel Only: ~ 100%

Please Note:

At this stage of its development Pandora PFA desitinguishes only between

(Generic) Neutral paticles i.e. Photons and (Generic) Charged particles i.e. Pions

So far mainly conceived to investigate 30%/√E Jet Energy Resolution

'Correct' particle ID still to be done!!!

Cut Based Electron ID

30GeV e-, μ - and π - sample

Estimators

- $\square EPratio = E_{ECAL}/P_{Track}$
- $\Box Efrac = E_{ECAL}/E_{total}$ of a Cluster

$$\square R_P = \sum_{i=nHits} r_i E_i^{0.4} / \sum_{i=nHits} E_i^{0.4} of a \quad Cluster$$

Definition of Efficiency and Rejection Rate

□ Efficiency: $Eff = N_{\text{Electrons Identified}}/N_{\text{Electron PFOs from PFA}}$

□ Rejection Rate: $Rej = 1 - N_{\text{Mis-Identified}} / N_{\text{Background PFOs from PFA}}$

Efficiency and Rejection Rate for particular Identification
 Variable

Ep ratio: (continue)

 Muons are fully rejected by Epratio variable only. Efrac Only: (for Barrel Region Only)

- Rp Only: (for Barrel Region Only)
 - Since muons are fully rejected by EPratio

 Fix the Rp lower cut of 7 mm, adjust upper cut for optimization

- Overall Efficiencies and Rejection Rates of Different Cut Scenarios
 - Cut Scenarios: 1 to 6, looser to tighter (or softer to harder)

Cut Scenario	1	2	3	4	5	6
Epratio	0.6	0.65	0.7	0.75	0.8	0.85
Efrac	0.96	0.96	0.97	0.97	0.98	0.98
Rp	51	49	47	45	43	41

For Barrel Only

Overall Efficiencies and Rejection Rates (continue)
 For Barrel Only

- e.g. For ee->ZH->eeX ,
 - di-electron momentum mainly within 20 70 GeV
 - Cut Scenario2 and Cut Scenario3 are suitable:
 - Efficiency > 99.5 %;
 - Rejection Rate for pions
 - E of > 30 GeV: > 98%
 - □ E of 10 to 30 GeV: > 95%

Benchmark Processes ... from N.Graf this morning

$$e^+e^- \rightarrow ZH$$
, $H \rightarrow e^+e^- X$, $\mu^+\mu^- X$ ($M_H = 120 \text{ GeV}$, $E_{cms} = 250 \text{ GeV}$)

- tracking efficiency and momentum resolution
- material distribution in the tracking detectors
- EM shower ID, kink reconstruction (bremsstrahlung)
- Higgs Mass and cross section

⇒Study is fully compliant with requirements formulated by WWS Software Panel

Conclusion and Outlook

- During this analysis:
 - FullLDCTracking performance : good! :D
 - PandoraPFA perfomance: good! :D
- Electron Identification Objective achieved
 - Efficiency > 99.5%; Rejection Rate for pion > 98%*
 - EID cuts optimization for physics study is on going
 - Need to understand low energy pions -> CALICE testbeams!!
 - Likelihood method might lead to higher electron yield
- Bremsstrahlung: Comprimizes reco of basic interaction at IP
 - Algorithm to detect radiative events
 - Tracking to be improved or optimized for electrons

Moving on to Higgs Production X-Section in e channel

^{*} For Barrel, pion Energy > 30 GeV,

Backup Slides

^{*} For Barrel, 30 to 70 GeV,

Cut Based Electron

• Call fifticies and Rejection Rates (continue) r Barrel Only

- Optimization of Cuts
 - Define Optimization Factor as:
 - reflects the efficiency and rejection rate together, and respects to different background rate of different physics channel to be studied.

$$F_{opt} = (f_e Eff + f_b Rej)/(f_e + f_b),$$

where f_e is the fraction of final state electrons, f_b is the fraction of final state background particles

Cut Based Electron

Identification Cut Optimization (continue)

e.g. assume fe = fb

For Barrel Only

- e.g. For ee->ZH->eeX,
 - di- electron momentum mainly within 20 70 GeV
 - Cut2 and Cut3 are suitable:
 - Eff > 99.5 %; Rej ~ 99.0%

Cut Based Electron

Identification Cut Optimization (continue)

e.g. assume fe = fb

For Barrel Only

- e.g. For ee->ZH->eeX,
 - di- electron momentum mainly within 20 70 GeV
 - Cut2 and Cut3 are suitable:
 - Eff > 99.5 %; Rej ~ 99.0%