ZH study with full simulation

TILC08 Sim/Rec section

Mar. 05. 2008

Hiroaki Ono

Nippon Dental University

Introduction

- We study the Higgs mass reconstruction at ZH mode with the full detector simulation based on the GLD simulation packages
 - Jupiter(Detector simulation) \rightarrow Satellites(PFA, analysis)
- GLD-PFA has achieved around 30%/sqrt(E) jet energy resolution for Z-pole event, so we try to study the physics process using this PFA.
- Compare the performance of GLD-PFA with the cheated (perfect clustering) PFA.
 - ZH process at M_h=120GeV with
 - − $ZH \rightarrow vvH$ (2-jet), qqH(4-jet) at the E_{cm}=350GeV.

M_h>120GeV case is also studied.

Realistic GLD-PFA scheme

- 1. Small clustering (Nearest neighboring method)
- 2. Photon finding (likelihood method)
 - Separate photon and charged clusters
- 3. Charged hadron finding
 - Tube based track cluster matching
- 4. Neutral hadron finding (Calculate likelihood)
 - Separate neutral hadron and charge scattered events

Detail of GLD-PFA (photon likelihood)

GLD-PFA (Neutral hadron likelihood)

ZH study in GLD full simulation

Calorimeter cell size : 1cmx1cm, GLD geometry with GLD-PFA

Event display of ZH process (E_{cm}=350GeV, M_h=120GeV)

Selection criteria ($ZH \rightarrow vvH 2$ -jets)

PFA performance comparison (2-jets)

Event selection for 2-jets mode

BG is only ZZ for now

ZH→vvH (2jet) 200 fb ⁻¹	Cheated PFA (sig)	GLD-PFA (sig)	Cheaged PFA (bg)	GLD-PFA (bg)
# of signal	5495	5499	41998	41997
90 <evis<220 gev<="" td=""><td>5152</td><td>5155</td><td>39873</td><td>39833</td></evis<220>	5152	5155	39873	39833
cosθ _j <0.8	3378	3420	14480	14516
Pt > 20 GeV	3357	3359	14325	14359
NoffVtx>6 (b-tag)	1057	1068	1574	1572
Efficiency	19.2%	19.4%	3.8%	3.7%

Almost same efficiency could be achieved by cheated and GLD PFA.

2008.Mar.05

$ZH \rightarrow vvh$ (2-jets) $E_{cm}=350 GeV$

• Higgs mass is calculated as reconstruct invariant mass of 2-jets

Event selection for ZH \rightarrow qqH (4-jet) E_{cm}=350GeV

Best jets combination is selected from the chi square of $\chi^2 = ((M_{ii}-M_z)/\sigma_z)^2 + ((MissingM_h-M_z)/\sigma_z)^2$

£=50fb⁻¹

Chi2 cut efficiency looks low for GLD-PFA. That is caused by the difference of reconstructed energy between two PFAs.

ZH study with Mh>120GeV

- Mh=160GeV case, decay branch to WW from Higgs increase (91%).
- Try to analyze multi-jets environment in full simulator, ZH→qqWW, W→qq'(6-jets) at E_{cm}=350GeV
- Cheated PFA is used for physics analysis first, then try to shift realistic PFA.
- Current study is signal only. Add background
 - tt \rightarrow qWqW (6-jets) at E_{cm}=350GeV
 - E_{cm}=250GeV case, tt background can be suppressed and better for the Higgs mass precise measurement.

Event display of M_h=160GeV

ZH \rightarrow qqH at M_h=160GeV (E_{cm}=350GeV) H \rightarrow WW. W \rightarrow Iv, qq'

14 • •

High momentum lepton can be tagged as leptonic decay mode

2008.Mar.05

$ZH \rightarrow qqWW signal (M_h=160GeV)$

 $ZH \rightarrow qqWW, W \rightarrow qq'$ (6jet) multi-jets event using cheated PFA for now

To select best jets combination, calculate the chi squire of $\chi^2 = ((M_{jj}-M_z)/\sigma_z)^2 + ((M_{w1}-M_w)/\sigma_w)^2 + ((M_{w2}-M_w)/\sigma_w)^2$ Next step is realistic PFA reconstruction and background study 2008.Mar.05 ZH study report 15

Summary and Next steps

ZH event is studied with perfect and GLD PFA.

- 2-jets mode, both PFA can reconstruct mass peak even though GLD-PFA is wider than perfect clustering.
- 4-jets (multi-jets) event case, the difference of PFAs are much larger, now investigating this reason.
- Need to be checked the difference with jet by jet.
- Need to be improve GLD-PFA performance
 - Re-clustering for better energy matching between calorimeter cluster energy and charged track.
 - Iteration of $Z \rightarrow qq(2-jet)$ event analysis
- Include other SM backgrounds for ZH study.

Decay branch of Higgs

 $M_{h}=120 \text{GeV}$ $Br(h \rightarrow bb) = 68\% (2 \text{ jets})$ $M_{h}=140 \text{GeV}$ $Br(h \rightarrow WW) = 48\%$ $Br(h \rightarrow bb) = 34\% (2 \text{ jets})$ $M_{h}=160 \text{GeV}$ $Br(h \rightarrow WW) = 91\%$ $WW \rightarrow qq' qq' (4 \text{ jets})$ $WW \rightarrow lvqq' (lepton+2 \text{ jets})$ $WW \rightarrow lvlv (2 \text{ leptons})$

Main decay mode

- M_h=120GeV : *h→bb*
- M_h =140GeV : $h \rightarrow WW, h \rightarrow bb$
- $M_h = 160 \text{GeV} : h \rightarrow WW$

Geometry in GLD Full Simulator (Jupiter)

