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TDR Quad Layout
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TDR Quad Specs

 Quadrupole Coil - Cos(2Phi)

— Inner Coll Radius =45 mm Coil Total Length = 626 mm
— Nominal Gradient = 60 T/m Max Field At Conductor=3.6T
— Operating Temperature 2 K Nominal Current = 100 A

— Inductance = 3.2 H
 Dipole Coils, Vert./Horiz. (Cos, Single Layer)
— Inner Coil Radius = 67 mm Coil Total Length = 626 mm
— Max Field on Axis =0.074 T Max Current =40 A
— Inductance/Coil = 29 mH

* Field Quality (at 30 mm radius)
— Skew Quadrupole < 3*10-4
— Higher Harmonics Of Quadrupole < 10-3
— Alignment Error (Angle) < 0.1 mrad rms



Quad Field and Position Requirements

« Fast Motion (Vibration)

— Require uncorrelated vertical motion > ~ 1 Hz to be <100 nm

— Many measurements being done — data look close to meeting spec.
« Slow Motion (Drift)

— For dispersion control, want quad to stay stable relative to it neighbors
at few micron level, day to day

— Although slow ground motion is large, it is correlated on over long
distance range which makes its net effect small.

— Little data on local day-to-day motion of quad in a cryostat.
 Change of Field Center with Change in Field Strength

— For quad shunting technigue to be effective in finding the alignment
between the quad and the attached bpm, quad center must not move
by more than a few microns with a 20% change in field strength

— No data for prototype ILC quads.



Quad Vibration

« Why is Ground Motion a Concern for the ILC:
It will move the quadrupole magnets, which will steer the beams and

cause them to miss atthe IP: —«

« Temporal Scale of Problem:

Motion < 0.1 Hz heavily suppressed by trajectory feedback loops.

Motion > 10 Hz generally not significant.

« Spatial Scale of Problem:
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Correlation of Motion

Example of Vertical Motion Correlations in the SLAC Linac Tunnel
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Amplification & Additional Motion

Do not want support system to amplify or add to quad motion.

Recent measurements of DESY M6 show some amplification due to
cryostat supports, and some additional high freg motion.
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function 1s also shown.



Integrated RMS Motion (nm)

Earlier Vertical Quad Motion

Measurements at TTF
(ILC Goal: <100 nm forf>~1Hz)
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Long (> Minutes) Term Quad Motion

 One Concern is that He Gas Return pipe supports are
Intercepted by 40-80 K shield

* As heat load varies (rf on-off, beam on-off), the shield
temperature may vary up to ~20 degK

 From Paolo Pierini (INFN)

— A 1 K temperature variation results in a positional variation in the
range of 0.3 micron. Again, this is for a variation of the shield
temperature, but a similar effect applies if the tunnel temperature
changes (and this may explain also the measurements
remembered by Carlo).

— Furthermore, fiberglass expansion coefficients depend on the
orientation of the thermal gradient with respect to the primary fibers
and on the fiber sizes, but we do not have any direct thermal
expansion measurement (or thermal conductivity) data on our
composite material, so | am relying on literature data.



Also, varying corrector magnet lead heat loads may
change quad position (only 2K systems temp stable)

QUADS LEADS

CAVITY VESSEL
T4CM QUAD

Q{ T4CM BPM



Motion of Quad Center -vs- Field Strength

cembined quadnupols TESLASOD 2 block coil design 27110/00 1223

CIEMAT

Cos(2d) SC Quad
(~ 0.7 mlong)
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Why combined function (quad + corrector) magnets may not be a good
iIdea — these data show the measured quad strength for various
corrector settings (ID) for the CIEMAT quad in tests at DESY
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Cryostat and Cryogenic System
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New Rotating Coil Set-up Designed For
Measuring Large Bore Quads

&=  Hollow shaft encoder
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Y center (microns)

Normal-Conducting Quad Center
Stability Data Taken Over Five
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Magnetic Center Movement In
RHIC SC Quads

Magnetic Center of RHIC Quads Vs. Excitation
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From XFEL quad studies, it appears one can achieve 60 T/m
In a 35 mm radius superferric quad
(l.,e.,, 35 T/m* 56 mm ~ 60 T/m * 35 mm)

The magnetic center in such a iron-dominated quad may be
more stable than in coil-dominated design

Design criteria of XFEL Magnets

Requirements

Quadrupole Inner dipole Outer dipole

Strength 56T 0.006 T'm 0.006 T-m
Current 50 A 50A 50A
Temperature 2K 2K 2K
Aperture 112 mm 100 mm 105 mm
Field quality | |bg| < 10 units

Gradient/Field 35T/m 0.04T 0.04T
Length 250 mm 250 mm

Operation DC DC DC




Kashikhin: Pro/Con of Having Quadrupole
Package Between Cryomodules

SPEC. BELLOWS LARGE IN OPEN POSITION BELLOWS LARGE IN OPEN POSITION

546, 00 [ 99. 90
(WORKING SPACE
LEFT)-APPROXINATELY)
715. 00 | ‘ 720. 00 |
(WORKING SPACE M /
RIGHT)-APPROXIMATELY)

L

L | %) oo

sl A | \
A‘ﬂé ‘7 A ﬂﬁ@i _#léj

_— ‘

1200. 00

QUAD VESSEL ADJUST SUPPORT

Cons.

- More connections and higher tunnel installation cost

Pros:

Cryomodules and Quadrupoles having different specs and
performance are decoupled

Cryomodules could be identical
Manufacturing, assembly and test lines

are independent

Independent design, prototyping and tests

Could be different (higher) temperature and lower corresponding
cryoload

Lower influence of fringing fields from magnets and current leads
Feed boxes decoupled from Cryomodule

Lower quadrupole vibrations

Higher accuracy of quadrupole positioning

Easy mechanical position adjustment and long term space
stability

Easy replacement

Lower fabrication and assembly cost



He Vessel Support in the Cryostat

» Vertical cold mass deflection <0.001” due to self-weight.
= Natural frequencies of cold mass and support structure:

» First axial resonance ~72 Hz
» First lateral resonance ~129 Hz
= Conduction heat loads through the G-10 supports:
> 3.6 W to 80 K (each support)
» 0.8 W to 4.5 K (each support)



Initial Quad and BPM Alignment

To make the systematic BPM errors less than the required one micron
resolution, want beam centered in BPMs to the 100 micron level
If the Quad/BPM are on movers (or cryomodules moveable)

— Only require that the BPM center be aligned to the quad magnetic center

to 100 microns — likely ‘bolt’ the two devices together
If the Quad/BPM are not on movers (baseline) nor cryomodules

moveable

— Also want to quads to be aligned to 100 microns over a betatron

wavelength scale ~ 400 m

— This will be challenging as the quad/bpms are buried in the cryomodules

and move (hopefully repeatable) during cooldown



Other Follow-up CM Issue

 XFEL safety exhaust pipe DN 200

— All safety valves on the cryogenic components in the tunnel will
vent into this header. The operation pressure will be at about 1.3
bar absolute. The design pressure will be 20 bar absolute. (In an
catastrophic event, the pipe will be connected to the 20 bar system
of the helium shield circuits. This is the reason for the 20 bar
design.)

— The pipe will vent into atmosphere via additional exhaust valves at
both adjacent shaft buildings. The pipe is a heritage from our
original TESLA design. There we introduced this pipe to connect
the helium warm gas management of the different helium
refrigerators along the tunnel. (In those days we had the illusion
that we could avoid safety valves in the tunnel.)



