Summary of MLI Studies

Chris Adolphsen

GDE Meeting at Sendai, 3/14/08

On Axis Wake Kicks

(I. Zagorodnov, V Yakovlev, Z. Li and K. Bane)

Detailed view of FM and HM couplers - note protrusion of couplers

End on view of coupler geometry (from downstream end)

On-Axis Wake Due to Coupler Asymmetry

Numerical calculations performed in 3 steps: couplers in beam pipe, cavity with couplers, multiple cavities with couplers (I. Zagorodnov)

Wake varies along bunch; (k_x, k_y) are kicks averaged over beam; in calculations $\sigma_z = 1 \text{ mm}$ (due to mesh limitations)

• One set of couplers in beam pipe: $(k_x, k_y) = (-21, -19) \text{ V/nC}$; agrees well with analytical optical model with all elements at same z: (-21, -17) V/nC

• One cavity with couplers: $(k_x, k_y) = (-11, -10)$ V/nC; agrees well with a z-independent optical model with iris shadowing with all elements at same z: (-13, -7) V/nC.

• Periodic solution: $(k_x, k_y) = (-7.6, -6.8)$ V/nC/m (reached after 2 cavities)

V. Yakovlev has also performed numerical calculations for 1 mm bunches that agree reasonably well (*e.g.* periodic solution \sim -5 V/nC/m)

V. Yakovlev's Gdfidl Results

For σ_z = 0.3 mm the mesh needs to be finer, and more cavities are needed to reach periodic solution (~6) => large computer resources needed

Expectation is that the kick for the short bunch ~0.3 times the kick for σ_{z} = 1 mm

• T. Weiland's group is also working on this calculation

Symmetrizing Couplers

Z. Li proposes rotating upstream coupler by 180° to reduce wake =>

For one cavity with couplers, optical model + iris shadowing: (k_x, k_y) = (-2.5, 1.2) V/nC [was (-13, -7) V/nC]

Effect on Beam

Wake has two terms: an offset term and a slope term

Offset:

A constant driving term to the equation of motion generates a kind of dispersion => the closed orbit depends on (longitudinal) position in bunch;

model: $y'' + y/\beta^2 = e^2 N W(s)/E$ has solution $y = \beta^2 e^2 N W(s)/E$ + betatron oscillation(s)

Particles will perform free betatron oscillation about different centers, depending on *s*; projected emittance will oscillate; no real wake effect; average emittance will increase due to energy spread (filamentation) and normal cavity wake

Slope:

Numerical results for 3 couplers in beam pipe, $Wav \sim 2.4$ V/nC/mm/m; for periodic case should reduce a factor 2~3 to ~1 V/nC/mm/m, which is a factor 20 smaller than the normal cavity wake, so can be ignored

Estimated Emittance Growth (analytical approximation)

Let eN = 3.2 nC, $<\beta>= 68 \text{ m}$, $\gamma \varepsilon_v = 2*10^{-8} \text{ m}$.

20	3.1	1.03
5	1.23	1.02
2	1.04	1.003

Bottom Line: For periodic solution the wake due to coupler asymmetry should not be a problem; with Z. Li's modification, the effect will be even less

Summary of RF Kicks (Z Li)

Eacc = 35 MV/m, I_Beam = 0.011A, Qext ~3.4E6

	Accelerating Gradient = 31.5MV/m Head-tail: +- 1 sigma_z Kick unit: Volt				
		X-centroid	Y-centroid	X-head-tail	Y-head-tail
	TDR	-2106	-785	33	3.5
	TDR-M	761	2621	24	4
ſ	TDR,TDR-RotX	609	-739	20	0.3
$\left\{ \right.$	TDR-M,TDR-M-RotX	664	2606	11	~0
l	TDR-M, TDR-M-MirrorZ	664	15	11	4

M = TDR with 180 deg rotation of HOM on non-FPC end

RotX = TDR rotated about x axis by 180 so FPC switches from up-stream to down-stream end and power feed direction changes.

MirrorZ = Up/Down end groups interchanged, power feed direction unchanged

Average over cavity pair

Summary of RF Kicks (K Bane)

	SL	AC	FNAL	
	<k> [V]</k>	k _{rms} [V]	<k> [V]</k>	k _{rms} [V]
X	-2000	17.	-3320	18.
у	-670	2.7	-230	2.9
ZLi_x	-650	13.	-1020	16.
ZLi_y	-2490	1.8	-2810	4.6

Average and rms of rf kicks experienced by the beam, according to SLAC and FNAL calculations. Here we assume V_{acc} = 31.5 MV/m and σ_z = 0.3 mm. Given are the total kicks due to all couplers in one cavity as is, and also after Z. Li's symmetrization (the upstream coupler is rotated by 180 deg).

Beamline Absorber Study Using T3P

- 1. Application (ILC, XFEL, ERL,...);
- 2. Simulation method (T3P);
- 3. Simulation results;

(3D one TESLA cavity with couplers, 2D one cavity/two-cavity/three-cavity..)

4. Going to simulate multi-cavity with short bunch and taking account into dispersive medium;

Monopole Single Passage Losses for three cavities without couplers

One bunch Q=3.2nc, bunch length=10mm Loss factor (V/pc)=9.96V/pc	Lossy dielectric conductivity σ_{eff} =0.6(s/m) Dielectric constant ϵ_r =15, within 80ns
Total Energy Generated by Beam (J)	10.208e-5
Energy propagated into beam pipe (J)	<i>4.44e-6</i>
Energy dissipated in the absorber (J)	7.0e-7
Energy loss on the Non SC beampipe wall (J) around absorber	9.3e-10
Energy loss in intersection between two cavities (J)	1.3e-9
	(cold copper conductivity=3500e6Simm/m)

Ratio of Dissipated Energy and Propagated Energy to Total HOM Energy

	1-cavity+absorber @200ns	1-cavity+absorber @80ns	2-cavity+absorber @80ns	3-cavity+absorber @80ns
left beampipe	14.1%	12.4%	8.9%	6.6%
right beampipe	11.3%	10.3%	6.0%	4.5%
absorber	2.6%	2.1%	1.8%	1.7%
Total	28.0%	24.8%	16.7%	12.8%
Absorber fraction	9.4%	8.5%	10.8%	13.5%

Beam Pipe Total for 3-cavity CM = 1.3e-9 * 2800 * 5 / (0.128 * 0.135) = 1.1 mW

Worse case for 8-cavity CM and 300 um bunch = 1.1 * (8/3) * (10/0.3) = 100 mW

E-Field Strength at TTF3 Cold Coupler Window Region *Lixin Ge, ACD Group at SLAC*

E magnitude

TTF HOM Measurement Data Analysis with Curve Fitting Method

Shilun Pei with Chris Adolphsen, Zenghai Li, Karl L. Bane, et al. SLAC, Feb. 27, 2008

2007-01-22T091106.mat

Modal Analysis of Dipole Signals

Derive frequency and Q of two polarizations from simultaneous fit to 36 orbits

Cavity Freq in ACC3/ACC4/ACC5

Cavity Q in ACC3/ACC4/ACC5

2007-01-22T091106

Fit of Amplitudes to BPM X and Y

 Ignoring the small out-of-phase (angle) contributions, the resulting mode amplitudes correlate well with the x and y positions inferred from the bpm data

Mode Polarizations

2007-01-22T091106, ACC4

CAV #	Mode 1 Pol. Angle	Mode 2 Pol. Angle
2	3.03°	92.70°
4	21.62°	111.27°
5	2.85°	94.29°
6	4.10°	93.68°
7	-15.01º	72.47º
8	-23.76°	68.77°

S-Band RF BPM Signal Simulations

Johnny Ng

RF Distribution Module Cold Test

The first (of 4) 2-cavity module of our RF power distribution system for Fermilab's first NML cryomodule is assembled and cold tested and ready for high-power testing. It incorporates:

SLAC VTO and hybrid

IBFM window (for pressurization of high-power volume)

S.P.A. Ferrite isolators and loads

Mega bends and flex guides (and dir. cplrs. while awaiting S.P.A. pieces)

C. Nantista

COLD TEST RESULTS:

VTO set for 2nd to last cavity pair (~3 dB).

PHASE

Phases of S_{31} and S_{41} initially within 1.7° of each other (adjustable with phase shifter).

Module through phase error = \sim -6.7° (easily absorbed in next modules phase shifters). SPACING

Feed spacing measures ~1.3827m, compared to 1.3837m coupler spacing.

Module length measures ~2.7674m, exact to measurement resolution.

C. Nantista

Simulation of Cavity Pair Coupling Through Hybrid w/o Circulators

ILC Positron Capture Cavity Prototype

RF waveforms are calibrated in these cases

Breakdown in Waveguide

Breakdown in Cavity

-45

Time: us

Breakdown Data During Processing

Rate (1/hr) vs Time (hr)

Fraction of Hard and Soft Events vs Time (hr)

Distribution of Time Between Breakdowns for Different Processing Periods

Cavity Gradient Measurements with Beam (Worlds first L-band cavity operation in an X-band Linac)

