CesrTA

Low Emittance Program

David Rubin Cornell Laboratory for

Low Emittance Tuning

Objectives

- Develop strategies for systematically tuning vertical emittance
 - Rapid survey
 - Efficient beam based alignment algorithm
- Demonstrate ability to reproducibly achieve our target of 5-10pm (geometric)
 - In CesrTA this corresponds to a vertical beam size of about ~10-14 microns
- Enable measurement of instabilities and other current dependent effects in the ultra low emittance regime for both electrons and positrons

For example - dependencies of

- Vertical emittance and instability threshold on density of electron cloud
- Cloud build up on bunch size
- Emittance dilution on bunch charge (intrabeam scattering)

Low Emittance Tuning

Outline

- Horizontal emittance in a wiggler dominated ring
- Sensitivity of horizontal emittance to optical and alignment errors
- Contribution to vertical emittance from dispersion and coupling
- Dependence of vertical emittance on misalignments of guide field elements
- Beam based alignment
- Alignment and survey
- Dependence on BPM resolution
- Beam position monitor upgrade
- Beam size monitors
- Intensity dependent effects
- First experiments with low emittance optics
- Experimental plan

Wiggler Emittance

Dependence of emittance on number of wigglers

In CesrTA - 90% of the synchrotron radiation generated by wigglers

Minimum horizontal emittance

Can we achieve the theoretical horizontal emittance? How does it depend on optical errors/ alignment errors?

Correct focusing errors - using well developed beam based method

- 1. Measure betatron phase and coupling
- 2. Fit to the data with each quad k a degree of freedom
 - Quad power supplies are all independent. Each one can be adjusted so that measured phase matches design
- 3. On iteration, residual rms phase error corresponds to 0.04% rms quad error.
 - → residual dispersion in wigglers is much less than internally generated dispersion
- We find that contribution to horizontal emittance due to optical errors is neglible.
- Furthermore we determine by direct calculation that the effect of of misalignment errors on horizontal dispersion (and emittance) is negligible We expect to achieve the design horizontal emittance (~2.3nm)

Sources of vertical emittance

Contribution to vertical emittance from dispersion

$$\varepsilon_{y} = 2J_{\varepsilon} \frac{\langle \eta_{y}^{2} \rangle}{\langle \beta_{y} \rangle} \sigma_{\delta}^{2}$$

Dispersion is generated from misaligned magnets

- Displaced quadrupoles (introduce vertical kicks)
- Vertical offsets in sextupoles (couples horizontal dispersion to vertical)
- Tilted quadrupoles (couples η_x to η_y)
- Tilted bends (generating vertical kicks)
- Contribution to vertical emittance from coupling

Horizontal emittance can be coupled directly to vertical through tilted quadrupoles

$$\varepsilon_{y} = \langle \overline{C}_{21}^{2} + \overline{C}_{22}^{2} \rangle \varepsilon_{x}$$

Effect of misalignments

For CesrTA optics:

Introduce gaussian distribution of alignment errors into our machine model and compute emittance

Element type	Alignment parameter	Nominal value
quadrupole	vert. offset	150µm
sextupole	vert. offset	300µm
bend	roll	100µrad
wiggler	vert. offset	150µm
quadrupole	roll	100µrad
wiggler	roll	100µrad
sextuple	roll	100µrad
quadrupole	horiz. offset	150µm
sextupole	horiz. offset	300µm
wiggler	horiz. offset	150µm

Dependence of vertical emittance on misalignments

Element type	Alignment parameter	Nomina l value
quadrupole	vert. offset	150µm
sextupole	vert. offset	300µm
bend	roll	100µrad
wiggler	vert. offset	150µm
quadrupole	roll	100µrad
wiggler	roll	100µrad
sextuple	roll	100µrad
quadrupole	horiz. offset	150µm
sextupole	horiz. offset	300µm
wiggler	horiz. offset	150µm

For nominal misalignment of all elements, $\varepsilon_v < 270 \mathrm{pm}$ for 95% of seeds

Misalignment tolerance

Contribution to vertical emittance at nominal misalignment for various elements

Element type	Alignment parameter	Nominal value	Vertical emittance	
quadrupole	vert. offset	150µm	114pm	
sextupole	vert. offset	300µm	8.3pm	
bend	roll	100µrad	2.3pm	
wiggler	vert. offset	150µm	1.4pm	
quadrupole	roll	100µrad	1pm	
wiggler	roll	100µrad	<< 0.01pm	
sextuple	roll	100µrad		
quadrupole	horiz. offset	150µm		
sextupole	horiz. offset	300µm	 	
wiggler	horiz. offset	150µm		

Target emittance is 5-10pm

Beam Based Alignment

- Beam base alignment algorithms and tuning strategies (simulation results)
 - Beam based alignment of BPMs (depends on independent quad power supplies)
 - $\Delta Y < 50 \mu m$
 - Measure and correct
 - β -phase \rightarrow design horizontal emittance
 - Orbit → reduce displacement in quadrupoles (source of vertical dispersion)
 - Vertical dispersion → minimize vertical dispersion
 - Transverse coupling → minimize coupling of horizontal to vertical emittance
 - Minimize β -phase error with quadrupoles
 - Minimize orbit error with vertical steering correctors
 - Minimize vertical dispersion with vertical steering correctors
 - Minimize coupling with skew quads

One parameter correction

- CESR correctors and beam position monitors
 - BPM adjacent to every quadrupole (100 of each)
 - Vertical steering adjacent to all of the vertically focusing quadrupole
 - 14 skew quads mostly near interaction region
- The single parameter is the ratio of the weights
- Three steps (weight ratio optimized for minimum emittance at each step)
 - Measure and correct vertical orbit with vertical steerings minimize Σ_i ($w_{c1}[kick_i]^2 + w_o [\Delta y_i]^2$)
 - Measure and correct vertical dispersion with vertical steering minimize $\Sigma_i \ (w_{c2} [kick_i]^2 + w_n [\Delta \eta_i]^2)$
 - Measure and correct coupling with skew quads minimize Σ_i ($w_{sq}[k_i]^2 + w_c[C_i]^2$)

Tuning vertical emittance

Evaluate 6 cases

2 sets of misalignments:

1. Nominal and 2. Twice nominal (Worse)

X 3 sets of BPM resolutions:

1. No resolution error, 2. *Nominal*, and 3. *Worse* (5-10 X nominal)

	Parameter	Nominal	Worse	
Element Misalignment	Quad/Bend/Wiggler Offset [µm]	150	300	- 100
TVIISMII SIIII OIL	Sextupole Offset [µm]	300	600	$\sigma_{\!\scriptscriptstyle m V} = 109 \mu m$ May 07 survey
	Rotation (all elements)[µrad]	100	200	
	Quad Focusing[%]	0.04	0.04	$\sigma(one\ turn) \sim 27 \mu m$
BPM Errors	Absolute (orbit error) [µm]	10	100	$\sigma(N_{turn} \text{ average})$ ~ 27 μ m/ \sqrt{N}
	Relative (dispersion error*)[µm]	2	10	
	Rotation[mrad]	1	2	

^{*}The actual error in the dispersion measurement is equal to the differential resolution divided by the assumed energy adjustment of 0.001

Low emittance tuning

Vertical emittance (pm) after one parameter correction:

Alignment	BPM Errors	Mean	1σ	90%	95%
Nominal	None	1.6	1.1	3.2	4.0
u	Nominal	2.0	1.4	4.4	4.7
"	Worse	2.8	1.6	4.8	5.6
2 x Nominal	None	7.7	5.9	15	20
"	Nominal	8.0	6.7	15	21
"	Worse	11	7.4	20	26

With nominal magnet alignment,

we achieve our target emittance of 5-10pm for 95% of seeds with *nominal* and *worse* BPM resolution

With 2 X nominal magnet alignment, one parameter correction is not adequate

Two parameter correction

Consider a two parameter algorithm

- 1. Measure orbit and dispersion. Minimize $\Sigma_i w_{c2} [kick_i]^2 + w_{o2} [\Delta y_i]^2 + w_{\eta 1} [\Delta \eta_i]^2$
- 2. Measure dispersion and coupling. Minimize $\Sigma_i w_{sq}[k_i]^2 + w_{\eta 2}[\Delta \eta_i]^2 + w_c[C_i]^2$

The two parameters are the ratio of the weights. The ratios are re-optimized in each step

Vertical emittance (pm) after one and two parameter correction:

Alignment	BPM Errors	Correction Type	Mean	1σ	90%	95%
2 x Nominal	Worse	1 parameter	11	7.4	20	26
"	"	2 parameter	6.5	6.7	9.6	11.3

- 2 X nominal survey alignment, 10μm relative and 100μm absolute BPM resolution
 - 2 parameter algorithm yields tuned emittance very close to target (5-10 pm) for 95% of seeds

Alignment and Survey

Instrumentation - new equipment

Digital level and laser tracker

Network of survey monuments

→Complete survey in a couple of weeks

Magnet mounting fixtures that permit precision adjustment

- beam based alignment

BPM resolution

Relative BPM resolution critical to measurement of vertical dispersion

Dispersion depends on differential orbit measurement

$$\eta_{v} = [y(\delta/2) - y(-\delta/2)]/\delta$$
 $\delta \sim 1/1000$

In CesrTA optics dependence of emittance on vertical dispersion is

$$\varepsilon_{\rm v} \sim 1.5 \; {\rm X} \; 10^{-8} \; \langle \eta^2 \rangle$$

Emittance scales with square of relative BPM error (and the energy offset δ used to measure dispersion)

 σ (single pass) ~ 27μm σ (N turn average) ~ 27μm/ \sqrt{N}

Note:

 $\sigma(nominal) \sim 2\mu m$ Achieve emittance target if

 $\sigma < 10 \mu m$

Beam Position Monitor System

- Presently have a mixed dedicated digital system with twelve stations and a coaxial relay switched analog to digital system with ninety stations.
- Digital system stores up to 10 K turns of bunch by bunch positions with a typical single pass resolution of ~ 30 microns.
- From the multi-turn data, individual bunch betatron tunes can be easily determined to < 10 Hz.
- Digital system will be fully implemented within the next year

Beam Position Monitor System

BPM resolution

Beam Size Measurements

- Conventional visible synchrotron light imaging system for light from arc dipoles for both electrons and positrons with a vertical beam size resolution of ~ 140 microns.
- 32 element linear photomultiplier array enables multi-turn bunch by bunch vertical beam size measurements using the same electronics as the digital beam position monitor system.
- A double slit interferometer system using the same 32 element linear photomultiplier array. Anticipated resolution
 - ~ 100 micron single pass bunch by bunch vertical beam size resolution
 - 50 micron multi-pass bunch by bunch vertical beam size resolution
- X-ray beam size monitor
 - Bunch by bunch 2-3 μ m resolution
 - One each for electrons and positrons

X ray beam size monitor Concept

Intensity dependent effects

• Emittance

Intrabeam scattering

Depends on amplitude and source (dispersion or coupling) of vertical emittance

IBS has strong energy dependence ($\sim \gamma^4$) Flexibility of CESR optics to operate from 1.5-5GeV will allow us to distinguish IBS from other emittance diluting effects.

Intensity dependent effects

Lifetime

Parameter	Value
Е	2.0 GeV
$N_{ m wiggler}$	12
B_{max}	1.9 T
ε_{x} (geometric)	2.3 nm
$\varepsilon_{\rm y}$ (geometric) Target	5–10 pm
$\tau_{\mathrm{x,y}}$	56 ms
σ_{E}/E	8.1 x 10 ⁻⁴
Q_{z}	0.070
Total RF Voltage	7.6 MV
σ_{z}	8.9 mm
$\alpha_{\rm p}$	6.2×10^{-3}
N _{particles} /bunch	2×10^{10}
$ au_{ ext{Touschek}}$	>10 minutes
Bunch Spacing	4 ns

As we approach our target emittance of 5-10pm and $2x10^{10}$ particles/bunch $\tau_{Touschek}$ decreases to ~10 minutes.

Initial experiments with low emittance optics

• 6 Wiggler low emittance optics - $\sigma_h \sim 7.5$ nm - 2.085GeV

Emittance tuning

- 6 wiggler optics
- 6 wiggler low emittance optics

• $\varepsilon_{\rm x} \sim 7.5 \,\rm nm$

Dispersion

6 wiggler, low emittance optics

Wigglers are located between 18-19 and 80-81 Correction of horizontal dispersion is required

March 5, 2008

6 wiggler optics

Dispersion

6 wiggler, low emittance optics

IR is primary source of vertical dispersion

In order to achieve ε_v < 5pm, we require $\langle \sqrt{\eta^2} \rangle$ < 9mm

Touschek Lifetime

6 wiggler, 1.89GeV optics

preliminary

11-September 2007

Lifetime

- Lifetime vs current 6 wiggler low emit optics
- $-\varepsilon_{\rm x} \sim 7.5 \,\rm nm$
- 2.085GeV

positrons

preliminary

29-february-2008

• Lifetime vs current - 6 wiggler low emit optics - $\varepsilon_x \sim 7.5$ nm

positrons and electrons

29-february-2008

Dispersion

AC dispersion measurement

Dispersion is coupling of longitudinal and transverse motion

-Drive synchrotron oscillation by modulating RF at synch tune -Measure vertical & horizontal amplitudes and phases of signal at synch tune at BPMs

Then $$\begin{split} \{\eta_v/\beta_v\} &= (y_{amp}/z_{amp}) \; sin(\phi_y \text{-} \; \phi_z) \\ \{\eta_h/\beta_h\} &= (x_{amp}/z_{amp}) \; sin(\phi_h \text{-} \; \phi_z) \end{split}$$

Advantages:

- 1. Faster (30k turns)
- 2. Better signal to noise filter all but signal at synch tune

"measured c_12" - 30k turn simulation

"model eta" - Model dispersion

[&]quot;model c_12" - Model y-z and x-z coupling

System status

- Status of beam based measurement/analysis
 - Instrumentation existing BPM system is 90% analog with relays and 10% bunch by bunch, turn by turn digital
 - Turn by turn BPM -
 - A subset of digital system has been incorporated into standard orbit measuring machinery for several years
 - Remainder of the digital system will be installed during the next year
 - Software (CESRV) / control system interface has been a standard control room tool for beam based correction for over a decade
 - For measuring orbit, dispersion, betatron phase, coupling
 - With the flexibility to implement one or two corrector algorithm
 - To translate fitted corrector values to magnet currents
 - And to load changes into magnet power supplies
 - ~ 15 minutes/iteration

Experimental program

- Cesr TA low emittance program
 - -2008
 - Install quad leveling and adjustment hardware new hardware simplifies alignment of quadrupoles
 - Extend turn by turn BPM capability to at large fraction of ring
 - Commission 2GeV 2.3nm optics [12 wigglers, CLEO solenoid off]
 Survey and alignment
 Beam based low emittance tuning
 - Commission positron x-ray beam size monitor (~2µm resolution)
 - Install spherical survey targets and nests and learn to use laser tracker More efficient survey and alignment
 - -2009
 - Complete upgrade of BPMs
 Single pass measurement of orbit and dispersion
 - Commission electron x-ray beam size monitor
 - -2010
 - Complete program to achieve ultr-low emittance

Correlated misalignment

Uncorrected Emittance from Slow-Wave Misalignment

Correlated misalignment - temperature dependence

- Magnets move as tunnel warms with operation
- Temperature change is not uniform slowly varies along circumference
- $(dy/dT)\Delta T < 30\mu m$

Slow wave

$$\Delta y = A\sin(k_n s + \phi)$$

 $k_n = 2\pi n/circumference$

A< $30\mu m$, $\rightarrow \varepsilon$ < 1pm

Time dependence of survey

Is the survey stable?

Short time scale

- Measured quadrupole vibration amplitude at frequency > 2 Hz is less than $1 \mu m$
- \rightarrow Corresponding to $\Delta \epsilon_{\rm y} << 2 {\rm pm}$

Element	Misalignment	$\langle \frac{\varepsilon_y}{2pm} \rangle =$	95% $\varepsilon_{\rm y} < 2 {\rm pm}$
Quad	Vertical offset [µm]	19	13
Quad	tilt [µrad]	141	95
Sextupole	Vertical offset [µm]	147	101
Bend	tilt [µrad]	51	34
Wiggler	Vertical offset [µm]	183	111

Time dependence of survey

Is the survey stable?

Long time scale

For most quads *nominal* alignment (~150µm) is preserved for at least a year A few magnet stands will have to be secured