Thrust distribution at N³LL with power corrections and precision determination of α_s(m_z)

Vicent Mateu

Max-Plank-Institute for Physics Munich

IWLC 2010

Geneva/CERN

20 - 10 - 2010

Taskforce :A. Hoang & V. Mateu- MPI[AFHMS]R. Abbate & I. Stewart - MITM. Fickinger- University of Arizona

arXiv: 1006.3080 [hep-ph]

Outline

Motivations

- Recent world average for $\alpha_s(m_z)$.
- Experimental data.
- Theoretical developments
 - SCET: factorization & resummation & power corrections.
 - Nonsingular terms.
- Results
 - Tail fits: a two parameter fit.
 - Final value for $\alpha_s(m_Z)$.
- Applications to a linear collider
 - Size of non-perturbative effects
 - Sensitivity to $\alpha_s(m_Z)$.

Motivations

Determinations of α_s(m_z)

 $\alpha_s(m_z)$ is a key parameter for the analysis of all collider experiments,

flavour observables and new physics searches

 $\alpha_s(m_z) = 0.1184(7)$ EPJC64 689 [Bethke '09]

Ever decreasing error from averaging

 $\alpha_s(m_Z) = 0.1183(8)$

PRD78 114507 [HPQCD '08]

Fit to Y-splittings, Wilson loops

Thrust experimental data $e^+e^- \xrightarrow{Q} jets$

LEP 2 jet event

OPAL 3 jet event

$$1 - \tau = \max_{\hat{n}} \frac{\sum_{i} |\hat{n} \cdot \vec{p}_{i}|}{Q}$$

- τ is an event-shape variable
- $\tau \rightarrow 0 \Rightarrow \text{dijet}$ $\tau \rightarrow 0.5 \Rightarrow$ spherical

At each Q there is a distribution in τ

Theoretical motivation

Theoretical developements

Jet production

Particles in each hemisphere have $p_{+} = E + p_{n} \sim O(Q)$ $p_{-} = E - p_{n} \sim O(\Lambda_{QCD})$ $p_{\perp} \sim O(Q\Lambda_{QCD})$

$$Q^{2} = \left(E_{e^{+}} + E_{e^{-}}\right)^{2} = \left(\sum_{hem \, a+b} p_{i}^{\mu}\right)^{2} \approx 2\sum_{hem \, a} E_{i}^{2} \sim (100 \text{ GeV})^{2}$$
$$\mu_{Jet}^{2} = \left(\sum_{hem \, a} p_{i}^{\mu}\right)^{2} \approx \sum_{hem \, a} (E_{i}^{2} - \vec{p}_{i}^{2}) \sim \sum_{hem \, a} p_{i}^{+} p_{i}^{-} \sim Q \Lambda_{QCD} \sim (20 \text{ GeV})^{2}$$
$$\mu_{soft}^{2} = p_{hadron}^{2} = \Lambda_{QCD}^{2} \sim (2 \text{ GeV})^{2}$$

 Λ_{QCD}

large logs !

3 energy scales → EFT

In this case the small SCET parameter is either τ or

Factorization theorem

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left(\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{b}}{\mathrm{d}\tau} \right) \left(\tau - \frac{k}{Q}\right) S_{\tau}^{\mathrm{mod}} \left(k - 2\overline{\Delta}\right) + O\left(\sigma_{0} \frac{\alpha_{s} \Lambda_{\mathrm{QCD}}}{Q}\right)$$

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau} = Q \sum_{i} \sigma_{0}^{I} H_{Q}^{I}(Q,\mu) \int \mathrm{d}s \ J_{\tau}(s,\mu) e^{-2\frac{\delta}{Q}\frac{\partial}{\partial\tau}} S_{\tau}^{\mathrm{part}} \left(Q \tau - \frac{s}{Q}, \mu \right)$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left(\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{b}}{\mathrm{d}\tau} \right) \left(\tau - \frac{k}{Q}\right) S_{\tau}^{\mathrm{mod}} \left(k - 2\,\overline{\Delta}\right) + O\left(\sigma_{0}\,\frac{\alpha_{s}\Lambda_{\mathrm{QCD}}}{Q}\right)$$

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau} = Q \sum_{i} \sigma_{0}^{I} H_{Q}^{I}(Q,\mu) \int \mathrm{d}s \ J_{\tau}(s,\mu) e^{-2\frac{\delta}{Q}\frac{\partial}{\partial\tau}} S_{\tau}^{\mathrm{part}} \left(Q\tau - \frac{s}{Q},\mu \right)$$

Hard Wilson coefficient (function)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left(\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{b}}{\mathrm{d}\tau} \right) \left(\tau - \frac{k}{Q}\right) S_{\tau}^{\mathrm{mod}} \left(k - 2\,\overline{\Delta}\right) + O\left(\sigma_{0}\,\frac{\alpha_{s}\Lambda_{\mathrm{QCD}}}{Q}\right)$$

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau} = Q \sum_{i} \sigma_{0}^{I} H_{Q}^{I}(Q,\mu) \int \mathrm{d}s \, J_{\tau}(s,\mu) e^{-2\frac{\delta}{Q}\frac{\partial}{\partial\tau}} S_{\tau}^{\mathrm{part}} \left(Q \,\tau - \frac{s}{Q}, \mu \right)$$

Jet function

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left(\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{b}}{\mathrm{d}\tau} \right) \left(\tau - \frac{k}{Q}\right) S_{\tau}^{\mathrm{mod}} \left(k - 2\overline{\Delta}\right) + O\left(\sigma_{0} \frac{\alpha_{s} \Lambda_{\mathrm{QCD}}}{Q}\right)$$

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau} = Q \sum_{i} \sigma_{0}^{I} H_{Q}^{I}(Q,\mu) \int \mathrm{d}s \ J_{\tau}(s,\mu) e^{-2\frac{\delta}{Q}\frac{\partial}{\partial t}} S_{\tau}^{\mathrm{part}} \left(Q \tau - \frac{s}{Q}, \mu \right)$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left(\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{b}}{\mathrm{d}\tau} \right) \left(\tau - \frac{k}{Q}\right) S_{\tau}^{\mathrm{mod}} \left(k - 2\overline{\Delta}\right) + O\left(\sigma_{0} \frac{\alpha_{s} \Lambda_{\mathrm{QCD}}}{Q}\right)$$

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau} = Q \sum_{i} \sigma_{0}^{I} H_{Q}^{I}(Q,\mu) \int \mathrm{d}s \ J_{\tau}(s,\mu) e^{-2\frac{\delta}{Q}\frac{\partial}{\partial\tau}} S_{\tau}^{\mathrm{part}} \left(Q \tau - \frac{s}{Q}, \mu \right)$$

Renormalon subtraction

- Reduces sensitivity to low momenta in the soft function
- Removes an $O(\Lambda_{\text{QCD}})$ renormalon from the first moment of the soft function

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left(\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{b}}{\mathrm{d}\tau}\right) \left(\tau - \frac{k}{Q}\right) S_{\tau}^{\mathrm{mod}}(k - 2\overline{\Delta}) + O\left(\sigma_{0}\frac{\alpha_{s}\Lambda_{\mathrm{QCD}}}{Q}\right)$$

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau} = Q \sum_{i} \sigma_{0}^{I} H_{Q}^{I}(Q,\mu) \int \mathrm{d}s \ J_{\tau}(s,\mu) e^{-2\frac{\delta}{Q}\frac{\partial}{\partial\tau}} S_{\tau}^{\mathrm{part}} \left(Q\tau - \frac{s}{Q},\mu\right)$$
Still has large logs

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left(\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{\mathrm{ns}}}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{b}}{\mathrm{d}\tau} \right) \left(\tau - \frac{k}{Q} \right) S_{\tau}^{\mathrm{mod}} \left(k - 2\,\overline{\Delta} \right) + O\left(\sigma_{0} \,\frac{\alpha_{s} \Lambda_{\mathrm{QCD}}}{Q} \right)$$

Nonperturbative corrections

In the tail region $\ell_{\text{soft}} \sim Q \tau \gg \Lambda_{QCD}$ and we can expand the soft function $S(\tau) = S_{\text{pert}}(\tau) - S'_{\text{pert}}(\tau) \frac{2\Omega_1}{Q} \approx S_{\text{pert}}\left(\tau - \frac{2\Omega_1}{Q}\right) \qquad \Omega_1 \sim \Lambda_{QCD} \qquad \begin{array}{l} \text{Is a nonperturbative} \\ \text{parameter defined in} \\ \text{field theory} \end{array}$

Results

Ingredients for the calculation

When fixed order resuls are important primed counting is better

Estimate of theory uncertainties

Unknown parameters — estimated by padé approximants

Nonsingular statistical error

Flat random scan over 500 points to estimate theory uncertainty

Tail predictions, scan over theory uncertainty

Comparison to recent determinations

Numerical impact of nonperturbative corrections is very important

Applications to a linear collider

Size of nonperturbative effects

Conclusions

• The Soft-Collinear Effective Theory provides a powerful formalism for deriving factorization theorems and analyzing processes with jets.

• SCET has finally provided theorists with a mean to catch up to the experimental precision of LEP. $\alpha_s(m_Z) = 0.1135 \pm 0.0002_{exp} \pm 0.0005_{had} \pm 0.0009_{pert}$

- Global fit of all data with all Q's and all τ 's .
- Field theoretical treatment of nonperturbative effects (unlike Monte Carlos)

 \longrightarrow main reason for a low value of α . Strong motivation to have ILC measurements at as high as possible Q.

ILC outlook

- Increase statistics as the tail regions is much broader.
- Mild decrease of sensitivity at high energies.
- Possibility to complete ignore nonperturbative effects.
- Clarify the situation for the determination of α .

The future for high precision determinations of the strong coupling constant looks good!