Determinations of α_s from event shapes: Results from existing data and an outlook for the ILC

- JADE and OPAL experiments
- Event shape distribution
- Measurement of α_s from JADE- and OPAL distributions using NNLO calculations

•EPJC 64:351, S. Bethke, S. Kluth, Collaboration

•To be submitted to EPJC, the OPAL[®] Collaboration

– Outlook for the ILC

FIELD -4 842 KG TALC 0039 DATE

Experiments

JADE: 1978-1986 at PETRA, DESY c.m. energy Q=12-44GeV

OPAL: 1989-2000 at LEP Q=91-209 GeV

Old data saved, software reactivatedNew Monte Carlo models

QCD up to 200 GeV

Hadronic cross section

Running strong coupling (Eur. Phys. J. C 64, 689)

Event shape variables y

One-hemisphere variables:

Two-hemisphere variables:

- Thrust 1-T
- C-parameter
- Total Jet Boadening B_{T}

- Wide Jet Broadening B_w
- Durham 2 jet flip parameter y_{23}^{D}
- Heavy Jet Mass M_H

Event shape distributions

October 20, 2010

IWLC2010 - Determinations of alphas from event shapes - C. Pahl

Fits of distributions

Predictions: Next to Next to Leading Order $O(\alpha_s^3)$

(finished 2008 after 25 years)

$$\frac{1}{\sigma}\frac{d\sigma}{dy} = \frac{dA}{dy}\frac{\alpha_s}{2\pi} + \frac{dB}{dy}\left(\frac{\alpha_s}{2\pi}\right)^2 + \frac{dC}{dy}\left(\frac{\alpha_s}{2\pi}\right)^3$$

+normalization+scale dependence (compensation in 2 loops)

optionally: +Next to Leading Logarithmic Approximation (scale compensation in 1 loop)

Hadronic event in e⁺ e⁻ annihilation

Fits of distributions

Event shape thrust

At 14, 35, 91, 207 GeV; hadron level with stat. errors

Data described well over virtually all phase space, in particular including NLLA

Determination of α_s

Errors: stat. / exp.+had.+scale

- More complete than NLO+NLLA analyses:
 - renormalisation scale uncertainty reduced
 - scatter from different variables reduced
 - in particular (OPAL) not including NLLA

$\alpha_s(m_z^\circ)$ results:

	JADE	OPAL
NNLO	0.1210±0.0061	0.1201±0.0030
NNLO+NLLA	0.1172 ± 0.0051	0.1189 ± 0.0041

2.6-5.0% precision, among the best measurements

Running coupling

Running $\alpha_{S}(Q)$ result

from event shape combination, OPAL

- JADE energy range 14-44 GeV: running confirmed strongly
- OPAL range 91-209 GeV: better precision

Errors: stat. / exp.+ had.+ scale

October 20, 2010

IWLC2010 - Determinations of alphas from event shapes - C. Pahl

Summary, JADE & OPAL

- Analyses of data taken at the JADE and OPAL experiment are still ongoing
- Measurements not limited by statistical and experimental precision: New models and calculations allow improved determination of α_{S}
- Running of $\alpha_S(Q)$ confirmed strongly in the JADE energy range
- $\alpha_s(m_Z^{}\circ)$ measured precisely by OPAL
- QCD precisely studied in e⁺e⁻ important for LHC

Statistical

- L=2•10³⁴/cm²s ~ 10³•LEP1
- $\sigma_{had} \sim 10^{-3} \cdot \text{LEP1}$
- Selection efficiency slightly worse than LEP2 hep-ex/9912051
- Precision of 0.0001 in few years

Statistical

- L=2•10³⁴/cm²s ~ 10³•LEP1
- $\sigma_{had} \sim 10^{-3} \bullet \text{LEP1}$
- Selection efficiency slightly worse than LEP2 hep-ex/9912051
- Precision of 0.0001 in few years

Detector uncertainties

- OPAL
 - acceptance cut
 - tracks+cluster
 - MC model

JADE, additionally:

Statistical

- L=2•10³⁴/cm²s ~ 10³•LEP1
- $\sigma_{had} \sim 10^{-3} \cdot \text{LEP1}$
- Selection efficiency slightly worse than LEP2 hep-ex/9912051
- Precision of 0.0001 in few years

Detector uncertainties

- OPAL
 - acceptance cut
 - tracks+cluster
 - MC model

• JADE, additionally:

ILC detector very hermetic, good tracking & calorimetry: Detector uncertainty $\Delta det/\alpha_s \sim 0.01$ expected

http://tesla.desy.de/new_pages/TDR_CD/PartIII/partIII.pdf

Residual Background

- Selection cuts varied
- JADE, additionally:
 - bb cross section $\pm 5\%$
- OPAL, additionally:
 - 4f cross section $\pm 5\%$
 - ISR algorithm varied
- ILC: Larger background, but
 - Polarization
 - Good b-tagging
 - Bkg measured well

500 GeV: uncertainty of $\Delta b kg / \alpha_s \sim 0.01$ expected http://tesla.desy.de/new_pages/TDR_CD/PartIII/partIII.pdf

Hadronisation uncertainties

∆had from NNLO+NLLA

• JADE & OPAL: Estimated by larger difference between PYTHIA and HERWIG, ARIADNE

ILC: *α_s uncertainties* at 500 GeV

Hadronisation uncertainties

∆had from NNLO+NLLA

- JADE & OPAL: Estimated by larger difference between PYTHIA and HERWIG, ARIADNE
- Agreeement with MC studies at 500 GeV.

ILC: *α_s uncertainties* at 500 GeV

Uncertainty due to uncalculated higher orders

- Estimated conventionally by varying the renormalisation scale $\mu_R{=}0.5~\sqrt{s}$... 2.0 \sqrt{s}

ILC: *α_s uncertainties* at 500 GeV

Uncertainty due to uncalculated higher orders

- Estimated conventionally by varying the renormalisation scale $\mu_R{=}0.5~\sqrt{s}$... 2.0 \sqrt{s}

Uncertainty due to uncalculated higher orders

 Estimated conventionally by varying the renormalisation scale $\mu_R = 0.5 \sqrt{s} \dots 2.0 \sqrt{s}$

Compare scale uncertainties 500 GeV vs.

		α _s measure- ment at LEP1	α _s (500GeV) estimate	α _s (m _Z °) evolved from α _S (500GeV)
1	NLO missing: α _s ³	0.1192	0.0959	0.1192
		±0.0047	±0.0024	±0.0038
		(OPAL PR404)		
NN mis	NNLO	0.1205	0.0967	0.1205
	missing: α_{s}^{4}	± 0.0027	± 0.0011	±0.0017
Scale uncertainty reduced to				

Summary, ILC

- Uncertainties of $\alpha_s(m_Z^\circ)$ measurement at 500 GeV:
 - Statistical ~ 0.0001
 - Detector ~ 0.001
 - Background ~ 0.001
 - Hadronisation ~ 0.0001
 partons are almost seen!
 - Scale ~ 0.001 NNLO very important
- ILC+NNLO = precision

Test of the running of $\alpha_s(\sqrt{s})$: Extended lever arm