Extra dimensions and Seesaw neutrino at ILC

Tomoyuki Saito (Tohoku Univ.)

M. Asano, K. Fujii, N. Haba, S. Matsumoto, T. Nabeshima, Y. Takubo, H. Yamamoto, K. Yoshioka

Outline

Model

- Simulation condition
- Electron mode analysis
- Tau mode analysis
- Summary

2010/10/20 IWLC 2010 @ CERN, CICG

Seesaw Mechanism

Seesaw mechanism : Origin of tiny neutrino mass is explained.

N is too heavy to observe.

Seesaw neutrino and Extra-dimension

Introducing the extra-dimension ...

$$M_N = \frac{2n-1}{2R} (n = 1, 2, \cdots)$$

n: KK mode
R: Radius of 5th-dim
Each KK mode of N

contributes to Seesaw.

Characteristic of Model

- ► V can be light with not so heavy N. ⇒ $1/R \sim 100 \text{GeV} \rightarrow M_N \sim 100 \text{GeV}$
- Yukawa coupling can be large. \Rightarrow N has the sizable coupling to SM particles.

TeV-scale N can be observed at ILC.

Signal at ILC

Electron-mode (l = e) and tau-mode ($l = \tau$) were studied.

Simulation

- Event generator : Physsim (included ISR and beamstrahlung)
- GLD fast detector simulator
- : 500 GeV, 1 TeV C. M. energy
- Integrated luminosity : 500 fb⁻¹
- Right-handed neutrino mass [KK mode]
 - N_1 : **150** GeV
 - N_2 : **450** GeV
 - N₃ : **750** GeV
- *m*₃_ $m_3 - m_2 - m_2 - m_1 - m_2$ m_2 m_1 m_3 m_1

Normal Inverted Degenerated

Neutrino mass hierarchy : <u>Normal, Inverted, Degenerated</u>

Cross-section on Electron mode

The cross-sections of the signals and backgrounds are calculated by Physsim.

Signal	Ecm=500 GeV			Ecm=1TeV		
KK mode	Normal	Inverted	Degenerated	Normal	Inverted	Degenerated
1st KK	6.524	297.5	257.1	7.79	355	307
2nd KK	0.065	2.975	2.571	0.517	23.6	20.4
3rd KK	/	/	/	0.085	3.86	3.34

Background	Ecm=500 GeV	Ecm=1TeV	
evW	4460	10300	
$WW \rightarrow l_V qq$	1320	560	
ZZ -> llqq+vvqq	108	42.8	
tt	531	29.4	

Cut summary at 500 GeV

	Signal [Inverted]	evW	WW	ZZ	tt
before cut	177700	2231000	660000	54000	265500
10 < Electron Energy < 200	115728	188275	325990	2852	114198
60 < 2jet mass < 100	104679	126691	269700	129	2493
135 < N mass < 160	101057	22594	11324	1	568
Cut efficiency (%)	56.9%	1.00%	1.70%	0.00%	0.20%
Significance (S/N)	274.5				

Signal can be separated from the background.

9

Precision at 500GeV ILC

The measurement precision on N at 500GeV is estimated.

Precision at 1TeV ILC

The measurement precision on N at 1TeV is estimated.

Some KK mode of *N* can be observed at ILC with high precision.

τ -mode study

N itself can be observed by electron-mode

However, it is necessary to study other modes to **prove the relation with the neutrino physics**.

- C.M. energy : 500GeV
- ☞ Integrated luminosity : 500 fb⁻¹
- Neutrino mass hierarchy :Normal, Inverted

 \square N mass (1stKK) : **150GeV**

Cross-section

Cross-sections of the signal and background are calculated.

The powerful background rejection is necessary.

Event reconstruction

The event reconstruction is done by the following way.

- 1, Forced 3jet reconstruction
- 2, τ jet ID \Rightarrow A jet with the smallest number of track is selected.
- 3, W reconstruction \Rightarrow 2jets except for tau candidate

- 4, τ jet reconstruction with the correction of N mass
- 5, *N* reconstruction $\Rightarrow 2jet + \tau$

15

Cut summary

	Signal [Inverted]	Electro n mode	evW	WW
No cut	2090	3260	2231000	1980000
$10 < E_{tau} < 150$	1880	2655	1574690	1155700
$60 < M_{2jet} < 100$	1525	2227	1206880	833895
Likelihood_evw > 0.63	1077	1837	112158	683066
Likelihood_e > 0.11	999	996	81226	367250
$80 < M_N < 160$	993	939	53093	94225
$135 < M_N$ (corrected) < 165	821	554	12276	14861
Cut efficiency (%)	39.3%	17.0%	0.55%	0.75%
Significance	4.86			

Backgrounds are rejected effectively.

Likelihood analysis

The likelihood analysis is applied to obtain better signal significance.

Likelihood variables Number of the track in tau jet $L = \frac{L_{sig}}{L_{sig} + L_{bg}}$

- 2) Max track energy in a tau jet
- 3 Energy in tau jet without the maximum energetic track

Right-handed neutrino mass

The precision on the cross section is evaluated with the reconstructed M_N distribution.

rrecision at ILC (%)						
Precision (%)	Normal	Inverted				
M_N	0.18	0.21				
Cross section	11.3	12.4				
$Br(\tau)/Br(e)$	13.1	12.4				

D-matrices of **II** (0/)

Combined with the result from the study of the electron-mode

 $Br(\tau)/Br(e)$ can be measured with about 10% precision.

Summary

The measurement precision of TeV-scale N in the extra-dimension model was studied for ILC

	Electron mode	: Able to	observe some	KK mode
	Tau mode	: Able to	observe the 1s	t KK modes
>	Precisio	n	Normal	Inverted
	$\Delta[Br(\tau-mode)]$	Br(<mark>e-mode</mark>)]: 13.1 %	12.4 %

The physics model can be identified by the ratio of branching ratio

Seesaw mechanism and Extra-dimension

$$M_N = \frac{2n-1}{2R} (n = 1, 2, \cdots)$$

Kaluza-Klein(KK) mode N_1, N_2, \dots

n : KK mode*R*: Radius of 5th dimension

Neutrino become light by the sum of the contributions on each KK modes.

Lagrangian

$$\begin{split} \mathcal{L}_{\text{int}} &= -\frac{g}{\sqrt{2}} \bar{e} W U_{\text{MNS}} P_L \nu + h.c. \\ &- \frac{g}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{1}{\pi R m_n} \bar{e} W X P_L N^{(n)} + h.c. \\ &- \frac{g_Z}{2} \sum_{n=1}^{\infty} \frac{1}{\pi R m_n} \bar{\nu} Z \left(\frac{2m_{\nu}}{\mathcal{M}}\right)^{1/2} \mathcal{O} P_L N^{(n)} + h.c. \\ &- \frac{g_Z}{2} \sum_{n,m=1}^{\infty} \frac{1}{\pi^2 R^2 m_n m_m} \bar{N}^{(n)} Z \left(\frac{2m_{\nu}}{\mathcal{M}}\right) P_L N^{(m)} \\ &- \sum_{n=1}^{\infty} \frac{1}{\pi R v} h \bar{\nu} \left(\frac{2m_{\nu}}{\mathcal{M}}\right)^{1/2} \mathcal{O} P_R N^{(n)} + h.c. \\ &- \sum_{n,m=1}^{\infty} \frac{1}{\pi^2 R^2 v m_m} h \bar{N}^{(n)} \left(\frac{2m_{\nu}}{\mathcal{M}}\right) P_L N^{(m)} + h.c. \end{split}$$

Detector performance

Detector	Performance	Coverage
Vertex detector	$\sigma_b=7.0\oplus(20.0/p)/\sin^{3/2} heta\mu m$	$ \cos \theta \le 0.90$
Central drift chamber	$\sigma_{P_T}/P_T = 1.1 imes 10^{-4} p_T \oplus 0.1\%$	$ \cos \theta \le 0.95$
EM calorimeter	$\sigma_E/E = 15\%/\sqrt{E} \oplus 1\%$	$ \cos \theta \le 0.90$
Hadron calorimeter	$\sigma_E/E = 40\%/\sqrt{E}\oplus 2\%$	$ \cos \theta \le 0.90$

Cut summary at 1TeV

	Inverted	evW	WW	ZZ	tt
before cut	177700	5160000	280000	21400	14715
10 < Lepton Energy < 400	77419	253731	100860	2175	6546
60 < W mass < 100	51391	125755	58838	103	124
135 < N mass < 165	44021	9238	1234	5	23
efficiency (%)	24.77%	0.18%	0.44%	0.02%	0.16%
significance	188.5				

1stKK study on electron mode @ 500GeV

2nd KK study on electron mode @ 500GeV

3rd KK study on electron mode @ 500GeV

3rd KK Right-handed neutrino mass

Precision of cross-section @ 1TeV

		Normal	Inverted	Degenerated
1TeV	1st KK	13.6	0.58	0.74
	2nd KK	-	2.78	3.11
	3rd KK	-	9.92	10.0

Precision of cross-section @ 1TeV

	1st KK	2nd KK	3rd KK
Normal	0.409		
Inverted	0.015	0.053	0.206
Degenerated	0.019	0.076	0.226

Event reconstruction

N mass is reconstructed by information of the decay products

Likelihood e

