

Damping Rings Summary

S. Guiducci, INFN, M. Palmer, Cornell, Y. Papaphilippou, CERN, J. Urakawa, KEK

IWLC, Geneva 22 October 2010

٠

DR Agenda – Wednesday 20

IIL	Istituto Nazior di Ficica Nucle						
Opening session, Chaired by M. Palmer							
9:00 Working group organisation	Y. Papaphilippou, CERN						
9:15 Design progress for the ILC Damping Rings	S. Guiducci, INFN/LNF						
9:45 Conceptual design of the CLIC Damping Rings	Y. Papaphilippou, CERN						
10:15 ATF status	J. Urakawa, KEK						
Lattice design and Low emittance tuning, Cha	aired by R. Bartolini						
11:15 Update of 3.2 km ILC DR design	J. Gao, IHEP						
11:40 Low emittance tuning at CERTA	J. Shanks, Cornell						
12:05 ASLS low-emittance tuning progress	E. Tan, R.Dowd, ASLS						
X-ray storage rings and kickers, Chaired	by S. Guiducci						
14:00 DIAMOND status	R. Bartolini, JAI/DIAMOND						
14:30 ATF fast kicker progress (Webex)	T. Naito, KEK						
14:55 Update on fast pulser design/prototyping for the ILC kickers (Webex)	C. Burkhart, SLAC						
15:20 CLIC extraction systems (common WG6, 7, 8,)	M. Barnes, CERN						
RF systems (Common WG8 and 4), Chaire	d by A. Grudiev						
16:00 Introduction	S. Guiducci, INFN						
16:10 Transient beam loading correction at ILC DR	K. Kubo, KEK						
16:35 RF system issues due to pulsed beam in ILC DR	S. Belomestnykh, Cornell						
17:00 Conceptual design of the CLIC DR RF system	A. Grudiev, CERN						
17:25 Discussion on 50% duty cycle operation of the ILC DR and synergies with CLIC DR RF design	ALL						

DR Agenda – Thursday 21

Instabilities, Chaired by J. Urakawa						
9:00 Collective instabilities simulations for the CLIC damping rings	E. Koukovini-Platia, CERN					
9:30 Observations and Analysis of Fast Beam-Ion Instabilities at SOLEIL	R. Nagaoka, SOLEIL					
10:00 Coherent synchrotron radiation for damping rings: theory and experimental proposal	F. Zimmermann, CERN					
E-cloud, Chaired by G. Rumolo	E-cloud, Chaired by G. Rumolo					
11:00 Electron Cloud instability measurements	M. Billing, Cornell					
11:30 Electron cloud mitigation at CESRTA	M. Palmer, Cornell					
IBS, Chaired by Y. Papaphilippou						
14:00 Simulation of Intrabeam scattering	A. Vivoli, CERN					
Wigglers (Common with WG8), Chaired by H. Schmickler						
16:00 Design and prototyping of Nb3Sn wigglers for the CLI damping rings	D. Schörling, CERN					
16:20 Short period NbTi wiggler prototype for CLIC damping r	ing A. Bragin, BINP					

16:40 Progress on the superconducting undulator for ANKA and on the instrumentation for R&D S. Casalbuoni, ANKA

Closing session, Chaired by Y. Papaphilippou

17:00 Recommendation on ILC DR EC mitigation (webex)

M. Pivi, SLAC

17:30 Discussion on future R&D planning, experimental program and LER collaboration

ILCDR - 6.4 km Lattice

- Lattice for the 6.4 km is mature
 - Racetrack layout optimal for CFS
 - Flexible momentum compaction (2.9 $10^{-4} \div 1.3 10^{-4}$)
 - DA large enough for injection acceptance
- Technical design is in progress for:
 - Arc layout
 - Wigglers
 - vacuum system
- Vacuum chamber Impedance including bpms with bellows and wiggler SR absorbers has been evaluated

A. Wolski et al. Damping Rings Design Work at the Cockcroft Institute, ILC10 Beijing

BPM Circuit upgrade (FNAL)

Able to measure Injection TBT, Narrowband Orbit, Narrowband Calibration, and Last Turn on every injection

Upgrade of Beam Instruments DR BPM readout (FNAL digitizer) EXT Strip-line BPM readout (SLAC-LCLS digitizer) Multi-OTR monitors

Upgrade of Accelerator Two LINAC klystron Modulators EXT corrector PS

R&D

Fast Kicker EXT Laser Wire 4-mirror optical cavity installation Cold BPM Single- and Multi-bunch instability

JAI(RHUL, Oxford) / KEK

Multi-bunch beam extraction by the Fast kicker

- Kick angle was stable as 4x10⁻⁴ < ILC requirement.
- A pulse train delay circuit will be installed to stabilize the HV pulser for multi-30 bunch extraction.

in DR:

- 3 Trains,
- 9(max 10) bunches/train with
 5.6 nsec spacing

Extracted:

- 27(max 30) bunches with 308 ns spacing
- bunch-by-bunch profile follows that in the DR.
- bunches were extracted from the last bunch to the first bunch.

T. Naito, WG2, Wed 14:30

7

- Low-power option (1312 bunches) → Smaller circumference damping ring (6.4 km → 3.2 km)
- 2 lattices with the same racetrack layout as the DCO4 and similar straight sections are at present under study
 - FODO arc cells with variable momentum compaction
 2.8-10⁻⁴ ÷ 6.2-10⁻⁴ (D. Wang, J. Gao and Y. Wang, IHEP)
 - SuperB-like arc cells, low momentum compaction
 1.3•10⁻⁴ (M. Biagini, S. Guiducci, INFN)
- Different configuration options
 - Low power: 1312 bunches, 5 Hz repetition rate
 - Low power: 1312 bunches, 10 Hz repetition rate
 - High power: 2625 bunches, 5 Hz repetition rate

Main DR issues for BAW2 (SLAC 18-21st Jan. 2011):

- ECLOUD evaluations
 - Comparison of 6.4km ring (2600 bunches) and 3.2km ring (1300 bunches)
 - Both ring configurations exhibit similar performance for single bunch instability threshold
 - 3.2km ring is an acceptable baseline design choice
 - Recommendation for mitigation techniques
 - Characterization of electron cloud at different bunch spacing in 3.2km ring: 6ns (1300 bunches) and 3ns (2600 bunches)
- RF issues for 50% duty cycle DR operation (discussion at RF session, common WG2, WG8, WG4; Wednesday 16÷18)

EC Working Group Baseline Mitigation

Mitigation Evaluation conducted at satellite meeting of ECLOUD`10 (October 13, 2010, Cornell University)

EC Working Group Baseline Mitigation Recommendation

	Drift*	Dipole	Wiggler	Quadrupole*
Baseline Mitigation I	TiN Coating	Grooves with TiN coating	Clearing Electrodes	TiN Coating
Baseline Mitigation II	Solenoid Windings	Antechamber	Antechamber	
Alternate Mitigation	NEG Coating	TiN Coating	Grooves with TiN Coating	Clearing Electrodes or Grooves

*Drift and Quadrupole chambers in arc and wiggler regions will incorporate antechambers

- Preliminary CESRTA results and simulations suggest the presence of *subthreshold emittance growth*
 - Further investigation required
 - May require reduction in acceptable cloud density ⇒ reduction in safety margin
- An aggressive mitigation plan is required to obtain optimum performance from the 3.2km positron damping ring and to pursue the high current option

S. Guiducci, M. Palmer, M. Pivi, J. Urakawa on behalf of the ILC DR Electron Cloud Working Group

CESRTA Program

- The final run in Phase I of the CESRTA program concluded on September 30, 2010
- Program Highlights
 - Achievement of $\varepsilon_y = 20 \text{pm}$ target
 - Tests of a range of EC mitigations
 - Beam dynamics studies

6 5

3

- Inputs for the ILC DR baseline design

17 16 15 14 13 12 11 10 9 8

collector number

Dipole RFA -

SLAC Chicane

collector current density (nA / mr

50

20

10

Beam Current Scan

150

mΑ

100

beam currer

ILC Damping Ring RF system 50% Duty Cycle

- e⁻ linac runs at 10 Hz alternating:
 - 1 pulse for positron production and injection into e⁺ DR
 - 1 pulse for collisions at 5 Hz
- e⁺ DR is empty half of the time (100 ms):
 - Beam injected in ~1ms
 - Beam stored for 100 ms for damping
 - Beam extracted in ~1 ms
- Main Concern:
 - large beam loading variation in a very short time (1 ms)
 - implications on RF system and beam stability
- WG2 RF Session, Wednesday 16:00: Discussion to get advice from RF experts in preparation of BAW2 meeting, SLAC 18-22 Jan 2011
 - Feasible? Needs more R&D? Cost implications?

Laboratori Nazionali di Frasca

Alessandro Gallo (DAFNE RF system, LNF) performed further analysis and derived

$$\tan \psi_{\max} \approx -\frac{(R/Q)Q_{ext}I_{b_{\max}}}{V_c} \sin \varphi_0 = \frac{(R/Q)Q_{ext}I_{b_{\max}}}{V_c} \sqrt{1 - \frac{1}{\eta^2}} \underset{eq.2}{=} \sqrt{\eta^2 - 1}$$
$$P_{FWD}(I_b = 0) = P_{beam_{\max}} \left[\frac{1}{4} + \frac{\tan^2 \psi_{\max}}{4}\right] = \left(\frac{\eta}{2}\right)^2 P_{beam_{\max}}$$

where η is the overvoltage factor. One can see that for $\eta \leq 2$ the cavities can be operated at fixed detuning while the power demand for zero beam current does not exceed the maximum beam power.

Questions:

Cornell University

 \square Is it possible to reduce the overvoltage factor?

□ How it was chosen in the first place?

The 3.2 km ring has $\eta \leq 2$ for all the configurations

Summary

- $\hfill\square$ 10 Hz operation of the ILC Damping Ring RF system seems to be feasible.
- We have presented four different options. Each of them however have challenges.
- Option #3 is the most attractive as the RF power demand is minimal under it.
 However, it requires extensive R&D.
 (Option #3 Fast frequency tuner)
- Option #1 would be the most easily implementable if the overvoltage factor can be lowered to 2.

Common concerns & studies needed (in addition to those listed for individual options):

- □ RF window/coupler power handling with full reflection (except option #3)
- □ Feedforward to mitigate transients during beam injection/extraction
- Pulsed operation of the RF system is worth considering as it will save power and reduce thermal load on RF window/coupler. Two options here: (i) pulsed RF and klystron mod anode; (ii) pulsed klystron HV.

CLIC DR parameter optimization

- Reasonable magnet strengths (magnet models already studied) and space constraints
- DA significantly increased
- TME optics with gradient in the bend and energy increase reduces IBS growth factor to 1.4 (as compared to 5.4 in original DR design)
- Reduction of space charge tuneshift with combined circumference reduction and bunch length increase
- Further optics optimization with respect to IBS and tracking code for comparaison with analytical theory

Parameters	Value
Energy [GeV]	2.86
Circumference [m]	420.56
Coupling	0.0013
Energy loss/turn [MeV]	4.2
RF voltage [MV]	4.9
Natural chromaticity x / y	-168/-60
Momentum compaction factor	8e-5
Damping time x / s [ms]	1.9/ 0.96
Dynamic aperture x / y [σ _{inj}]	30 / 120
Number of dipoles/wigglers	100/52
Cell /dipole length [m]	2.36 / 0.43
Dipole/Wiggler field [T]	1.4/2.5
Bend gradient [1/m ²]	-1.10
Max. Quad. gradient [T/m]	73.4
Max. Sext. strength [kT/m ²]	6.6
Phase advance x / z	0.452/0.056
Bunch population, [109]	4.1
IBS growth factor	1.4
Hor./ Ver Norm. Emittance [nm.rad]	400 / 4.5
Bunch length [mm]	1.6
Longitudinal emittance [keVm]	5.5

- Developed Monte-Carlo tracking code for IBS including synchrotron radiation damping and quantum excitation (SIRE, based on MOCAC)
- Agreement between analytical emittance growth and the mean values obtained by 20 SIRE runs
- Final emittances obtained by SIRE are just within the CLIC DR budget but for lower longitudinal emittance

Reaching Quantum Limit Of Vertical Emittance

Set	Fitted	Fitted	Fit
$\epsilon_{\rm y}/\epsilon_{\rm x}~(\%)$	$\epsilon_{\rm y}/\epsilon_{\rm x}~(\%)$	$\epsilon_{\mathbf{y}} \ (\mathbf{pm})$	χ^2/dof
0.01	$0.012^{+0.003}_{-0.002}$	$1.2^{+0.3}_{-0.2}$	0.69
0.06	$0.043^{+0.013}_{-0.008}$	$4.5^{+1.3}_{-0.8}$	0.42
0.10	$0.092^{+0.025}_{-0.012}$	$9.4^{+2.6}_{-1.2}$	0.01

- Tousheck component variation with RF voltage in ASLS
- Blue curve fit corresponds to $\epsilon_v = 1.24 \pm 0.3 \text{ pm}$
- Beam size measurement in Diamond after coupling correction
- V beam size at source point 6 μm
- Emittance coupling 0.08% →
 V emittance 2.2 ± 0.4 pm

Australian Synchrotron

E.Tan, R. Dowd, R. Bartolini

CLIC Damping Rings TMCI simulations

Results for round chamber

	X	У	X	У	
Chromaticit y H/V	Threshol d [MΩ/m]		Rise time (ms) τx=1.88, τy=1.91		
0/0	10	1 1	0.38	0.49	
9.2/1.9	16	3	1.92	2	
18.4/3.8	stable	6	stable	1.81	
27.6/5.7	stable	1 3	stable	1.81	

E. Koukovini-Platia, G. Rumolo

For chromaticity 0, the TMCI threshold is at 10 and 11 MΩ/m for x,y respectively
For positive chromaticity, there is no TMCI but another instability occurs.
As the chromaticity is increased, higher order modes get excited, less effect, move to higher instability thresholds

1 01

Wigglers' effect with IBS

æ	ε_{x} [nm] 3 2.5 2.5 2 1.5 1.5 0 0 0.02 0.04 $\lambda_{u}^{0.06}$	BINP Wigg 0.08	PM ler → 1 50 40 30 0.1	00 00 00 00 00	 Stronger wiggler fields and shorter wavelengths necessary to reach target emittance due to strong IBS effect Current density can be increased by different conductor type Nb₃Sn can sustain higher heat load (potentially 10 times higher than NbTi) Two wiggler prototypes 2.5T, 5cm period, built and currently tested by BINP
	Parameters	BINP	CERN]	□ 2.8T, 4cm period, designed by CERN/Up. Karlsruhe
	B _{peak} [T]	2.5	2.8		Mock-ups built and magnetically
	$\lambda_{W} [mm]$	50	40		tested
	Beam aperture full gap [mm]	1	13	•	Prototypes to be installed in a storage ring for beam
	Conductor type	NbTi	Nb ₃ Sn		measurements
	Operating temperature [K]	4	4.2		19

Nb₃Sn Technology

Nb-Ti Technology

SCU14 in ANKA

D. Schoerling, S. Russenchuck, A. Bragin et al.

Conceptual Design of CLIC DR RF system

All 3 options seems to be feasible but have different issues summarized below

	"A la	linac"	ARES		SC	
Train length [ns]	156	312	156	312	156	312
Total stored energy [J]	0.	3	77	154	77	154
Shunt impedance R [M Ω]	36		1.9	0.95	20000	10000
Total rf power [MW]	<mark>6</mark> (3)		6	~12	0.6	1.2
Total length [m]	10 (5)		~50	~50	~20	~40
Klystron bandwidth [%]	>1 < 0.1		.1	< 0.1		
Voltage modulation	Strong: Phase + amplitude		No, or very small phase	Could be stronger	No, or very small phase	Could be stronger
Strong HOM damping	demon	strated	demonstrated		demonstrated in single cell	
Transverse impedance	Higl	nest	Lower		Lowest	
Cryogenic power [MW]	()	0		>0.5	
Main Challenge	Voltage m for tra comper Low eff	odulation nsient nsation, iciency	Low efficiency Big size ¢ _s reduction wi		Low R/Q, Rf design both for fundamental and for HOM II help a lot here	

A. Grudiev

Main Beam: Transverse Beam Impedance of CLIC DR and PDR Striplines

Allowable transverse broad band beam impedance, in the CLIC PDR & DR, is $10M\Omega/m$. Maximum transverse impedance per kicker system is assumed to be 2%, i.e. $200k\Omega/m$.

Calculated transverse impedance, for 1.3m long striplines, is less than $200k\Omega/m$, for all frequencies, with or without tapers.

Calculated transverse impedance, for 3m long striplines, is less than $200k\Omega/m$, for all frequencies, with or without tapers.

For longitudinal impedance reasons, two sets of striplines with individual length of 1.5m may be used.

Transverse impedance of two sets of 1.5m striplines would be slightly greater than twice that shown for 1.3m striplines. Thus each PDR kicker system would meet the transverse impedance specification.

Striplines will be prototyped under the Spanish Program "Industry for Science".

M. Barnes

CLIC DR technology and experimental program

Super-conducting wigglers

 Demanding magnet technology combined with cryogenics and high heat load from synchrotron radiation (absorption)

High frequency RF system

 1 or 2GHz RF system in combination with high power and transient beam loading

Coatings, chamber design and ultra-low vacuum

 Electron cloud mitigation, lowimpedance, fast-ion instability

Kicker technology

□ Extracted beam stability

Diagnostics for low emittance

Profile monitors, feedback system

- Experimental program set-up for measurements in storage rings and test facilities
 - ALBA (Spain), ANKA (Germany), ATF (Japan), Australia Synchrotron (Australia), CESRTA (USA), DIAMOND (UK), SOLEIL (France),...

Low Emittance Rings collaboration

- Initiated by the ILC-CLIC working group on damping rings
- Workshop organized in January 2010 at CERN identifying items of common interest among the low emittance rings community (synchrotron light sources, linear collider damping rings, b-factories)
- Low emittance rings working groups formed
- **EU** network proposal is being prepared
- Next workshop to be organized during summer 2011

Working groups

1 Low emittance cells design

2Non-linear optimization

3 Minimization of vertical emittance

- ⁴Integration of collective effects in lattice design
- 5 Insertion device, magnet design and alignment

6 Instrumentation for low emittance

7 Fast Kicker design

- 8 Feedback systems (slow and fast)
- 9 Beam instabilities

10 Impedance and vacuum design