

CLIC main detector solenoid and anti-solenoid impact

<u>B. Dalena</u>, A. Bartalesi, R. Appleby, H. Gerwig, D. Swoboda, M. Modena, D. Schulte, R. Tomás

Outline

- Detector solenoid and QD0 overlap effects
- Anti-solenoid impact and design
- Incoherent synchrotron radiation effects in CLIC
- Conclusions and outlook

Solenoid and QDO overlap Effects

Due to crossing angle:

- Weak focusing: in the two transverse planes
- Orbit deviation: the beam is bent as it traverses the magnetic field
- *Coupling between x-y plane*: the particle position in one plane depends on the position in the other plane
- *Dispersion*: particles at lower energies experience a larger deflection than those at higher energies
- The beam emits *Incoherent Synchrotron Radiation* (ISR) as it is deflected

Schematic view of the two beam colliding with a crossing angle in the detector solenoid.

Detector solenoid and beamline magnets interference

- Worse vertical dispersion and <x', y> coupling at the IP of the main solenoid
- vertical offset at the IP

Y. Nosochkov and A. Seryi, PRST-AB 8, 021001 (2005)

Detector Solenoid magnetic fields

Main field component acting on the beam

 B_X component of solenoid fields in the beamline reference system

Orbit deviations

Vertical orbits deviation due to the detector solenoid field and its overlap with QDO (and the other FF magnets)

Vertical offset correction

Vertical offset at IP compensated by QDO offset

Vertical dispersion and <x',y> coupling at the IP

B. Dalena, IWLC 2010

Compensation of the optical distortions

Bucking coils that cancel the main solenoid field in the magnets region

- reduce the beam distortions at the IP
- QD0 shielding from the main solenoid field

B. Dalena, IWLC 2010

Anti-solenoid design

Anti-solenoids impact on the beams

Beam covariances at the IP

	D _y ∝ cov(Y,E) μm ILD	D _y / D _{y main} solenoid %	D _y ∝ cov(Y,E) μm SiD	D _y / D _{y main solenoid %}	IP Offset µm ILD	IP Offset µm SiD
Main Solenoid	9.853	100	13.047	100	-4.421	-6.417
Solenoid + Antisolenoid	-0.304	3	0.587	4.5	+0.069	-0.736
w/o Solenoid	0.000		0.000		0.000	0.000

Both anti-solenoids cancel > 95% of the vertical dispersion due to the main detector solenoid and QDO overlap.

	cov(y,x') μm rad ILD	cov(y,x') / cov(y,x') _{main} ^{solenoid} %	cov(y,x') μm rad SiD	cov(y,x') / cov(y,x') _{main} solenoid	IP offset µm ILD	IP offset µm SiD
Main Solenoid	0.146	100	0.171	100	-4.421	-6.417
Solenoid + Antisolenoid	-0.008	5	-0.011	6.5	+0.069	-0.736
w/o Solenoid	0.000		0.000		0.000	0.000

Both anti-solenoids cancel ~ 90% of the < x', y > coupling due to the main detector solenoid and QD0 overlap.

20 October 2010

B. Dalena, IWLC 2010

Magnetic and mechanical analysis (A. Bartalesi, CERN)

-The magnet (superconducting technology) dimensioning seems feasible. Stresses and global forces are quite relevant though.

Structural integration with
MDI area to be checked

- Residual main solenoid field is important for QDO achievable gradient

see M. Modena talk on CLIC QD0 status

From optical distortions correction to synchrotron radiation impact

- Anti-solenoid effectively reduces the optical distortions due to detector solenoid and QDO overlap at the IP
- Full compensation is needed to achieve nominal luminosity
 - Optimization of anti-solenoid
 - tuning knobs

...

- Even if full correction of the optical distortions is achieved luminosity loss due to incoherent synchrotron radiation still expected
 - Full compensated beam used to evaluate synchrotron radiation effects...

Luminosity Loss due to incoherent synchrotron radiation

Field Map	Bz [T]	Lumi loss [%]
CLIC_SID	5	~14.0
CLIC_SiD + Antisolenoid	5	~10.0
CLIC_ILD	4	~10.0
CLIC_ILD + Antisolenoid	4	~10.0
ILC_ILD at 3 TeV + AntiDiD	4	~25.0
ILC_4 th at 3TeV concept	3.5	~20.0

- Luminosity calculation by GUINEA-PIG
- CLIC half horizontal crossing angle 10 mrad
- $\Delta \sigma_y^* \propto (B\theta_c L)^{5/2}$ P.Tenembaum et al., PRST-AB 6, 061001 (2003)
- CLIC-BDS budget: 20% luminosity loss

Conclusion

- Detector Solenoid design has a big impact on the beam dynamics in the interaction region
 - Anti-Solenoid (bucking coils covering QDO) reduces (> 90%) the optical distortions at IP
 - AntiDiD excluded in CLIC at 3 TeV, due to luminosity loss for incoherent synchrotron radiation
 - ILC_4th concept disfavored in CLIC at 3 TeV, due to high luminosity loss for incoherent synchrotron radiation
 - CLIC_ILD and CLIC_SiD design give about 10% luminosity loss due to synchrotron radiation

... and outlook

- Further optimization in the anti-solenoid design to improve beam distortions at the IP and QDO shielding
- New detector length (shorter) can improve the luminosity loss due to incoherent synchrotron radiation
 - ILC_"like" detector designs give ~4% luminosity loss at 3 TeV

DiD - AntiDiD

DiD

- Coil wound on detector solenoid giving transverse field (Bx)
- It can zero y and y' at IP
- But the field acting on the outgoing beam is bigger than solenoid detector alone ⇒ pairs diffuse in the detector

AntiDiD

 Reversing DiD's polarity and optimizing the strength, more than 50% of the pairs are redirected to the extraction apertures

<u>A. Seryi</u>

Synchrotron Radiation photons

Solenoid field stability

• main solenoid and compensating solenoid scale together 2010