The CLIC Beam Delivery System

R. Tomás Thanks to the input of many: D. Angal-Kalinin, G. Burt, B. Dalena, J.L. Fernandez, L. Gatignon, E. Marín, M. Modena, J. Osborne, J. Resta, G. Rumolo, H. Schmickler, D. Schulte, A. Seryi, J. Snuverink, G. Zamudio

IWLC 2010, October 2010

Contents

- The BDS CDR chapter
- CLIC BDS layouts
- Subsystems
- Issues & challenges
- Summary & outlook

The BDS CDR chapter

"Live" Draft at:

clicr.web.cern.ch/CLICr/MainBeam/BDS/CDR/TEX Everybody is welcome to take a look and send criticism to: D. Angal-Kalinin (CI), A. Seryi (JAI) and R. Tomás (CERN)

The BDS layouts at 3 TeV and 500 GeV Guillermo Zamudio

3 TeV needs weak dipoles (20-120 G) due to SR. To keep the linac unchanged the IP crossing angle at 500 GeV is reduced to 18.6 mrad. Both BDS easily fit in same tunnel.

Diagnostics and Energy collimation

 $\sigma_y = 1 \mu m$ at laser wires. Energy spoiler must survive a full train impact.

Transverse collimation and FFS

Betatron collimators are consumable. Muon spoilers reduce the muon flux in the detector. Crab cavity restores the luminosity loss from a 20 mrad crossing.

Rogelio Tomás García

Low field dipoles

Measurements show no enhancements of multipoles at 1/140 of the design current. Insulation from stray fields?

Rogelio Tomás García

Collimation

Simulation galore confirming: collimation efficiency, moderate wakefileds effects, survivability of 1st spoiler (temperature & stress), etc.

Muons

A factor 10 reduction in muon flux with 83 m of magnetized iron (outer radius 55 cm).

Crab Cavities

Tight phase stability specs and high order mode damping.

Recently found that by design (optics) there is \approx 5% lumi loss!

The FFS: CLIC Vs ILC

CLIC 20% lumi loss from SR $\sigma_y \approx 1 \text{ nm}$ $\beta_y = 70 \ \mu\text{m}$ Chroma. $\approx 6.3 \times 10^4$ IP D'_x= 1.4 mrad Energy spread $\approx 0.3\%$ ILC Negligible SR $\sigma_y \approx 6 \text{ nm}$ $\beta_y = 400 \ \mu\text{m}$ Chroma. $\approx 1.5 \times 10^4$ IP D'_x= 9 mrad Energy spread $\approx 0.1\%$

CLIC FFS is considerably more challenging in every aspect. ATF2 is the common playground but CLIC requires Ultra-low IP β (see E. Marín's talk).

L* alternatives and performance

L*	total lumi	peak lumi	
m	$10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	$10^{34} \text{cm}^{-2} \text{s}^{-1}$	
3.5	6.9	2.5	
4.3	6.4	2.4	
6	5.0	2.1	
8	4.0	1.7	

Tuning performance for different L*

B. Dalena & G. Zamudio

		relative	absolute
L*	prealignment	success	success
[m]	[µm]	[%]	[%]
3.5	10	65	87*
4.3	10	80	100
6	8	80	90
8	2	80	46

* Recently improved by a better design and the use of knobs

Summary & outlook

- CLIC BDS CDR chapter well advanced (waiting for your feedback!)
- No major problem...
- Thanks to excellent international collaborations!
- Alignment and tuning remains as the biggest challenge \rightarrow lots to learn in ATF2!
- For the TDR phase:
 - New designs that consider tuning and CCs from the start?
 - wakefields in FACET