Overview of CLIC main linac accelerating structure design

21/10/2010 A.Grudiev (CERN)

Beam dynamics (BD) constraints based on the simulation of the main linac, BDS and beam-beam collision at the IP:

- N bunch population depends on <a>/ λ , Δa /<a> because of short-range wakes
- $N_{\rm s}$ bunch separation depends on the long-range dipole wake suppression

RF breakdown and pulsed surface heating (PSH) constraints:

- · $\Delta T^{max}(H_{surf}^{max}, t_p) < 56 \text{ K}$ (accelerating structure life time issues)
- $E_{surf}^{max} < 250 \text{ MV/m}$
- $P_{in}/C_{in} \cdot (t_p)^{1/3} < 18 \text{ MW/mm} \cdot ns^{1/3}$
- $(S_c = \text{Re}\{S\} + \text{Im}\{S\}/6) \cdot (t_p)^{1/3} < 4 \text{ MW/mm}^2 \cdot (200 \text{ ns})^{1/3}$

RF constraints: data analysis 1

			dphi												
	RF design name	f [GHz]	[deg] v	g1 [%]			140 -								
1	DDS1	11.424	120	11.7	High power										
2	T53VG5R	11.424	120	5	tost rocults	Ξ	120 ·								
3	T53VG3MC	11.424	120	3.3	lest results	Ž									
4	H90VG3	11.424	150	3	has been	Ę	100 ·	_	_			_			
5	H60VG3	11.424	150	2.8		en	80 -		-			_			
6	H60VG3R18	11.424	150	3.3	scaled to	adi			ġ_■ ■			_T			
7	H60VG3R17	11.424	150	3.6	t_{n-200} ns	gr	60 ·		-			┛┤╴┏		_	
8	H75VG4R18	11.424	150	4	tp=200 HS	ige	10	-							
9	H60VG4R17	11.424	150	4.5	BDR=1e-6	era	40 ·								
10	HDX11-Cu	11.424	60	5.1		Ą	20 -					_			
11	CLIC-X-band	11.424	120	1.1	bpp/m using									-	
12	T18VG2.6-In	11.424	120	2.6	nower		0 ·		-						_
13	T18VG2.6-Out	11.424	120	1.03	ροννει			0	5	10	15	20	25	30	
14	T18VG2.6-Rev	11.424	120	1.03	scaling lower					geome	try num	ıber			
15	T26VG3-In	11.424	120	3.3	<u> </u>	-	140								_
16	T26VG3-Out	11.424	120	1.65	$E^{30} \cdot t^5$. •					
17	TD18_KEK_In	11.424	120	2.4	$\frac{L_a}{p} = const$		120			-					
18	TD18_KEK_Out	11.424	120	0.9		Έ									
19	SW20A3p75	11.424	180	0	DDK	ž	100				•	_			-
20	SW1A5p65T4p6	11.424	180	0	bacad on the	2	80	•				_			
21	SW1A3p75T2p6	11.424	180	0	Dased off the	ent	00			1 -	÷ • .	T			
22	SW1A3p75T1p66	11.424	180	0	fitting the	adi	60	<u> </u>	<mark>┦∎</mark> ■			┛			
23	2pi/3	29.985	120	4.7		gr			-					•	
24	pi/2	29.985	90	7.4	data	e	40	-		1	_	-	╼╈┻╴	-	_
25	HDS60-In	29.985	60	8		0	20								
~~~			~~	E 4			20								
26	HDS60-Out	29.985	60	5.1				1							
26 27	HDS60-Out HDS60-Rev	29.985 29.985	60 60	5.1 5.1			0								_
26 27 28	HDS60-Out HDS60-Rev HDS4Th	29.985 29.985 29.985	60 60 150	5.1 5.1 2.6			0	 0	5	10	15	20			)
26 27 28 29	HDS60-Out HDS60-Rev HDS4Th HDS4Th	29.985 29.985 29.985 29.985	60 60 150 150	5.1 5.1 2.6 2.6			0	0	5	10 <b>deom</b> e	15	20 <b>nber</b>	25	30	)

## RF constraints: data analysis 2

Data has been scaled to tp=200 ns BDR=1e-6 bpp/m





# 1st generation of CLIC X-band test structure prototypes T18/TD18 2007 Parameters at tp=100 ns, <Ea>=100 MV/m



Very strong tapering inspired by the idea of having constant P/C along the structure

In TD18, all quantities are close to T18 at the same average gradient, except for the pulsed surface heating temperature rise which is factor 5 higher in the last cell.

# 2nd generation of CLIC X-band test structure prototypes T24/TD24 2007 Parameters at tp=100 ns, <Ea>=100 MV/m



Weaker tapering (quasi const gradient) together with smaller aperture (11% instead of 12.8%) reduce surface fields significantly compared to T18/TD18.

In TD24, all quantities are lower than in TD18 at the same average gradient. In particular pulsed surface heating temperature rise reduced by factor 2.

# From RF design to a piece of Copper





# Synthesis of accelerating structure test results scaled to CLIC breakdown rate





Scaling to CLIC conditions: Scaled from lowest measured BDR to  $BDR=4*10^{-7}$  and  $\tau=180$  ns (CLIC flat-top is 170 ns), using standard  $E^{29}\tau^5/BDR=$ const. Correction to compensate for beam loading not included – expected to be less than about 7%. WLC2010 Walter Wuensch 19 October 2010

### Comparison at tp=252 ns, BDR=1e-6 bpp/m



P/C*tp^(1/3) = **13.4** [MW/mm*ns^(1/3)]

P/C*tp^(1/3) = **10.6** [MW/mm*ns^(1/3)]

In TD18, all quantities are lower than in T18 measured at the same tp and BDR, except for the pulsed surface heating temperature rise which is factor 3 higher ???

#### Comparing last cell at tp=252 ns, BDR=1e-6 bpp/m





# Near term plans



iris number

iris number

#### Geometry difference between TD24 vg1.8 disk TD24 vg1.8 R05 H Field[A_per_m H Field[A_per_m 4.7000e-003 4.1000e-003 4.3643e-003 3.8071e-003 4.0286e-003 3.5143e-003 3.6929e-003 3.2214e-003 3.3571e-003 2.9286e-003 3.0214e-003 2.6357e-003 2.6857e-003 2.3429e-003 2.3500e-003 2.0500e-003 2.0143e-003 1.7571e-003 1.6786e-003 1.4643e-003 1.3429e-003 1.1714e-003 1.0071e-003 8.7857e-004 6.7143e-004 5.8571e-004 3.3571e-004 2.9286e-004 0.0000e+000 0.0000e+000

#### Design of the HOM Damping Load

Will be used for CLIC module prototype and for a structure prototype for high power testing with damping load inside (TD24_vg1.8_R05_SiC)





Tip size 1x1 mm Tip length 20 mm or 30 mm Base size 5.6 x 5 or 5.5 mm Base length 10 mm Waveguide width awd = 10.1 mm or 11 mm

#### Design of the damped compact coupler



# Beyond CLIC_G

• Next step in rf design will be a structure with a degree of tapering lower than TD18 (41%) and TD24 (8%)

- For example, ~ 20-25 %
- It will probably have bigger average aperture if CLIC main beam bunch charge can be increased accordingly.
- A detailed optimization of the parameters and rf design will be done soon



# Quadrants/halves family



QUADs with SLOTS T18_vg2.6_quad design is used but rounded 4 slots of 0.2 mm are introduced.

16



# Symmetrical disk design

It has a number of pros and cons:

+ higher Q

higher cost

requires axial alignment
tuning is more difficult
and it is not implement

The structure is in the production



# Alternative damping designs

- 1. DDS type is underdevelopment at 12 GHz by Cockcroft Institute and Manchester University (R. Jones, A. D'Elia, V. Khan).
- 2. Choke-mode type is under development in collaboration with Tsinghua University (J. Shi)
  - Minimum gap acceptable from the point of view rf breakdowns to be determined using CD10_choke with different gaps: 1mm, 2mm, etc.
  - 2. Damping design of the full structure is under way aiming at full structure prototype high power test

## The choke mode cavity and radial choke







### Damping simulation with Gdfidl/HFSS



Impedance and wakefield simulated in Gdfidl

## Design of CD-10-Choke



- CD10-Choke for demonstration
  - RF Design for Gap 1mm, 1.5mm, 2mm
  - Mechanical Design finished for 1mm-gap
  - Qualification disks and bonding test
- To the production pipeline and High Power testing



#### **Damped Detuned Structure**

- Gaussian distribution of cell parameters is chosen in this (CLIC_DDS) structure which causes Wakefield to decay in nearly Gaussian fashion for short time scale (few nsec)
- Limited number of cells (N=24) in a structure (poor sampling of a Gaussian) means truncation of Gaussian leading to re-coherence of the wake  $(t=1/\Delta fmin)$
- Re-coherence of the wake is suppressed by moderate damping: Coupling out the HOMs using a waveguide like structure i.e. manifolds running parallel to the accelerating cells
- Interleaving neighboring structure frequencies improves wake suppression



R.M. Jones, PRSTAB 9, 102001 (2006)

- This is a similar technique to that experimentally verified and successful employed for the NLC/JLC program
- Potential benefits include, reduced pulse temperature heating (In principle true but not for
- CLIC_DDS_A: pulse heating is greater than CLIC_G), ability to optimally locate loads, builtin beam and structure diagnostic (provides cell to cell alignment) via HOM radiation. Provides a fall-back solution too!





# CLIC_DDS_A: Regular disk #1

Section profile and Parameters Table



of Accelerator Science and Technology

# CLIC_DDS_A: E-Field profile along the structure



Thank you