SUSY Prediction for the ILC

Sven Heinemeyer, IFCA (CSIC, Santander)

Geneva, 10/2010

based on collaboration with O. Buchmüller, R. Cavanaugh, A. de Roeck, J. Ellis, H. Flächer, G. Isidori, K. Olive, S. Rogerson, F. Ronga, G. Weiglein

- 1. Introduction and motivation
- 2. The models and the tools
- 3. Predictions for the ILC
- 4. The future: GigaZ/Z factory
- 5. Conclusions

1. Introducion: How to make a prediction?

Comparison of precision observables with theory:

Precision data:
$$M_W, \sin^2 \theta_{\rm eff}, a_{\mu}, \ldots$$
Theory:
 $SM, MSSM, \ldots$ \downarrow

Test of theory at quantum level: Sensitivity to loop corrections

 \Rightarrow Information about unknown parameters

Very high accuracy of measurements and theoretical predictions needed

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like MSSM is SM-like

SM band: variation of M_H^{SM}

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like MSSM is SM-like

SM band: variation of M_H^{SM}

[LEPEWWG '10]

Assumption for the fit: SM incl. Higgs boson \Rightarrow no confirmation of

Higgs mechanism

 \Rightarrow Higgs boson seems to be light, $M_{H} \lesssim 160~{\rm GeV}$

Combine all existing precision data:

- Electroweak precision observables (EWPO)
- *B* physics observables (BPO)
- Cold dark matter (CDM)
- . . .

Predict:

- best-fit points
- ranges for Higgs masses
- ranges for SM parameters
- ranges for SUSY masses \Rightarrow ILC reach

2. The models and the tools

Our tool:

The "MasterCode"

 \Rightarrow collaborative effort of theorists and experimentalists [Buchmüller, Cavanaugh, De Roeck, Ellis, Flächer, Hahn, SH, Isidori, Olive, Paradisi,

Rogerson, Ronga, Weiglein]

Über-code for the combination of different tools:

- Über-code original in Fortran, now re-written in C++
- tools are included as subroutines
- compatibility ensured by collaboration of authors of "MasterCode" and authors of "sub tools" /SLHA(2)
- sub-codes in Fortran or C++
- \Rightarrow evaluate observables of one parameter point consistently with various tools

cern.ch/mastercode

Status of the "MasterCode":

- one model: (MFV) MSSM (see below)
- tools included:
 - B-physics observables [SuFla]
 - more *B*-physics observables [*SuperIso*]
 - Higgs related observables, $(g-2)_{\mu}$ [FeynHiggs]
 - Electroweak precision observables [FeynWZ]
 - Dark Matter observables [MicrOMEGAs, DarkSUSY]
 - for GUT scale models: RGE running [SoftSusy]
- \Rightarrow all most-up-to-date codes on the market!
- added: χ^2 analysis code [*Minuit*]
- currently being implemented:
 - Higgs constraints (for χ^2 contributions . . .) [HiggsBounds]
- planned: inclusion of more tools / more models

Status of the "MasterCode":

- one model: (MFV) MSSM (see below)
- tools included:
 - B-physics observables [SuFla]
 - more *B*-physics observables [*SuperIso*]
 - Higgs related observables, $(g-2)_{\mu}$ [FeynHiggs]
 - Electroweak precision observables [FeynWZ]
 - Dark Matter observables [MicrOMEGAs, DarkSUSY]
 - for GUT scale models: RGE running [SoftSusy]
- \Rightarrow all most-up-to-date codes on the market!

 \Rightarrow crucial for precision!

- added: χ^2 analysis code [*Minuit*]
- currently being implemented:
 - Higgs constraints (for χ^2 contributions . . .) [HiggsBounds]
- planned: inclusion of more tools / more models

Different methods:

1.) Scanning:

- 3-dim scans (possibly with CDM fixing one dimension)
- multi-dim scans
- multi-dim scans (with Markov Chain Monte Carlo technique)
- ⇒ MasterCode: multi-dim scans with MCMC technique

2.) Fitting:

- Frequentist
- Bayesian
- \Rightarrow MasterCode: Frequentist
- $\Rightarrow \chi^2$ function to include all experimental results

3.) Priors ... (none)

In general:

The MasterCode can perform fits in the (MFV) MSSM

(ready for NMFV MSSM: [FeynHiggs, SuFla])

However:

Concentrating on existing experimental data fits make sense only in GUT based models:

- CMSSM
- NUHM1, NUHM2
- mSUGRA
- VCMSSM

- . . .

In general:

The MasterCode can perform fits in the (MFV) MSSM

(ready for NMFV MSSM: [FeynHiggs, SuFla])

However:

Concentrating on existing experimental data fits make sense only in GUT based models:

- CMSSM
- NUHM1, NUHM2
- mSUGRA
- VCMSSM

— · · ·

\Rightarrow analyses exist already, to be shown here

 \Rightarrow analyses currently performed

3. Predictions for the ILC

[Buchmüller, Cavanaugh, De Roeck, Ellis, Flächer, S.H., Isidori, Olive, Ronga, Weiglein '09]

- combine all electroweak precision data as in the SM
- combine with B physics observables
- combine with CDM and $(g-2)_{\mu}$
- include SM parameters with their errors: m_t , M_Z , $\Delta \alpha_{had}$

$\Rightarrow \chi^2$ function

 \rightarrow scan over the full CMSSM/NUHM1 parameter space $\sim 2.5 \ 10^7$ points samples with MCMC

statistical measure: χ^2 function (Frequentist, no priors)

 \rightarrow final minimum: Minuit

 $\Delta\chi^2$: 68, 95% C.L. contours

⇒ preferred CMSSM/NUHM1 parameters

CMSSM:

 $m_{1/2} = 310 \text{ GeV}, m_0 = 60 \text{ GeV}, A_0 = 130 \text{ GeV},$ $\tan \beta = 11, \mu = 400 \text{ GeV}, M_A = 450 \text{ GeV}$ $\chi^2/N_{\text{dof}} = 20.6/19 \text{ (36 \% probability)}$ $\Rightarrow \text{ very similar to SPS 1a :-)}$

NUHM1:

$$m_{1/2} = 270 \text{ GeV}, \ m_0 = 150 \text{ GeV}, \ A_0 = -1300 \text{ GeV},$$

$$\tan\beta = 11, \ \mu = 1140 \text{ GeV}, \ M_A = 310 \text{ GeV}$$

(similar probability)

$\Rightarrow \mathcal{L}_{\mathsf{SUSY}}$

 \Rightarrow largely accessible spectrum for ILC (confirmation from LHC!)

.

12

Sven Heinemeyer, IWLC 10 (Geneva), 20.10.2010

200 ο 245 × 0 × 0 × 4 15 ? حر? £ ÷ **-ب** A <u>___</u>

 \Rightarrow largely accessible spectrum for ILC (confirmation from LHC!)

[2009]

Some more predictions: preferred M_A -tan β parameter space

[2009]

CMSSM

NUHM1

 \Rightarrow best-fit regions missed by LHC, better for ILC(1000)

 \Rightarrow CMSSM and NUHM1 fit amazingly well m_t and M_W \Rightarrow better than the SM: smaller errors, better best-fit points

4. The future: GigaZ/Z factory

Experimental errors of the precision observables:

	today	Tev./LHC	ILC	GigaZ	Z factory
$\delta \sin^2 \theta_{\rm eff}(\times 10^5)$	16	16	_	1.3	3
δM_W [MeV]	23	15	10	7	_
δm_t [GeV]	1.3	1-2	0.2	0.1	_

<u>Relevant SM parametric errors</u>: $\delta(\Delta \alpha_{had}) = 5 \times 10^{-5}$, $\delta M_Z = 2.1$ MeV

	$\delta m_t = 2$	$\delta m_t = 1$	$\delta m_t = 0.1$	$\delta(\Delta \alpha_{\sf had})$	δM_Z
$\delta \sin^2 \theta_{\rm eff} \ [10^{-5}]$	6	3	0.3	1.8	1.4
ΔM_W [MeV]	12	6	1	1	2.5

GigaZ: Improvement in the Blue Band plot:

[GFitter '09]

(note: artificially $M_H^{SM} = 120 \text{ GeV}$)

GigaZ: \Rightarrow Improvement in M_H determination:

[J. Erler, S.H., W. Hollik, G. Weiglein, P. Zerwas '00]

GigaZ: Most sensitive test of SM or MSSM:

[S.H., W. Hollik, A. Weber, G. Weiglein '08]

5. Conclusinos

- <u>Idea:</u> Predict most probable MSSM parameter regions using existing data: EWPO, BPO, CDM, ...
- Models: CMSSM, NUHM1
- statistical measure: χ^2 function (Frequentist, no priors) ~ 2.5 10⁷ points samples with MCMC $\Delta \chi^2$: 68, 95% C.L. contours
- Best-fit points:

CMSSM: $m_{1/2} = 310$ GeV, $m_0 = 60$ GeV, $A_0 = 240$ GeV, tan $\beta = 11$, $\mu = 380$ GeV, $M_A = 410$ GeV

 \Rightarrow very similar to SPS 1a :-)

Prediction of M_h (no LEP bound): $M_h = 109.5 \pm 6 \pm 1.5$ GeV NUHM1: $m_{1/2} = 270$ GeV, $m_0 = 150$ GeV, $A_0 = -1300$ GeV, $\tan \beta = 11$, $\mu = 1140$ GeV, $M_A = 310$ GeV Prediction of M_h (no LEP bound): best fit: $M_h \approx 121$ GeV

- $\bullet \Rightarrow$ large parts of the parameter space accessible at the ILC
- \Rightarrow strong future improvements via GigaZ/Z factory

Back-up

χ^2 calculation:

 \rightarrow global χ^2 likelihood function

combines all theoretical predictions with experimental constraints:

$$\chi^{2} = \sum_{i}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}} + \sum_{i}^{M} \frac{(f_{\mathsf{SM}_{i}}^{\mathsf{obs}} - f_{\mathsf{SM}_{i}}^{\mathsf{fit}})^{2}}{\sigma(f_{\mathsf{SM}_{i}})^{2}}$$

- N: number of observables studied
- M: SM parameters: $\mathbf{\Delta}\alpha_{\mathsf{had}}, m_t, M_Z$
- C_i : experimentally measured value (constraint)
- P_i : MSSM parameter-dependent prediction for the corresponding constraint

χ^2 calculation:

 \rightarrow global χ^2 likelihood function

combines all theoretical predictions with experimental constraints:

$$\chi^{2} = \sum_{i}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}} + \sum_{i}^{M} \frac{(f_{\mathsf{SM}_{i}}^{\mathsf{obs}} - f_{\mathsf{SM}_{i}}^{\mathsf{fit}})^{2}}{\sigma(f_{\mathsf{SM}_{i}})^{2}}$$

- N: number of observables studied
- M: SM parameters: $\mathbf{\Delta}\alpha_{\mathsf{had}}, m_t, M_Z$
- C_i : experimentally measured value (constraint)
- P_i : MSSM parameter-dependent prediction for the corresponding constraint

What to do if only a lower/upper bound exists?

 \rightarrow especially important: M_h

 \Rightarrow best-fit point and part of 68% C.L. are can be tested in 2011

 \Rightarrow best-fit point and part of 68% C.L. are can be tested in 2011

LHC (CMS) \oplus CMSSM analysis:

[2008]

reach with 1 fb⁻¹ @ 14 TeV incl. leptonic edge measurements

Some more predictions: $m_{\tilde{q}} - m_{\tilde{q}_L}$

CMSSM

NUHM1

 $\Rightarrow m_{\tilde{q}}$ often largest mass, but exceptions are possible

Some more predictions:preferred M_A -tan β parameter spaceCMSSMNUHM1

red dotted: discovery with 1 fb⁻¹ @ 7 TeV blue solid: 95% C.L. exclusion with 1 fb⁻¹ @ 7 TeV

\Rightarrow preferred regions missed in 2010-2011 run

Some more predictions: direct search for dark matter

NUHM1

[2009]

CMSSM

\Rightarrow only partially covered by future experiments

 \Rightarrow best-fit similar to SM, larger value would favor NUHM1

Current and future errors:

Current: $\delta m_t^{exp} = 1.3 \text{ GeV},$ $\delta (\Delta \alpha_{had}) = 3.5 \times 10^{-4}$ $\delta M_W^{theory,SM} \approx \pm 4 \text{ MeV},$ $\delta \sin^2 \theta_{eff}^{theory} \approx \pm 10 \times 10^{-5}$ $\delta m_t :$ $\delta M_W^{para} \approx \pm 13 \text{ MeV},$ $\delta \sin^2 \theta_{eff}^{para} \approx \pm 7 \times 10^{-5}$ $\delta (\Delta \alpha_{had}) :$ $\delta M_W^{para} \approx \pm 6.5 \text{ MeV},$ $\delta \sin^2 \theta_{eff}^{para} \approx \pm 13 \times 10^{-5}$ $\delta M_W^{exp} \approx \pm 23 \text{ MeV},$ $\delta \sin^2 \theta_{eff}^{exp} \approx \pm 16 \times 10^{-5}$

Future:

$$\begin{split} \delta M_W^{\text{theory}} \gtrsim \pm 2 \text{ MeV}, & \delta \sin^2 \theta_{\text{eff}}^{\text{theory}} \gtrsim \pm 2 \times 10^{-5} \\ \delta m_t : & \delta M_W^{\text{para}} \approx \pm 1 \text{ MeV}, & \delta \sin^2 \theta_{\text{eff}}^{\text{para}} \approx \pm 0.4 \times 10^{-5} \\ \delta (\Delta \alpha_{\text{had}}) : & \delta M_W^{\text{para}} \approx \pm 1 \text{ MeV}, & \delta \sin^2 \theta_{\text{eff}}^{\text{para}} \approx \pm 1.8 \times 10^{-5} \\ & \text{[GigaZ]} : & \delta M_W^{\text{exp}} \approx \pm 7 \text{ MeV}, & \delta \sin^2 \theta_{\text{eff}}^{\text{exp}} \approx \pm 1.3 \times 10^{-5} \end{split}$$