Technical systems in the BDS

R. Tomás Thanks to the input of many: D. Angal-Kalinin, G. Burt, B. Dalena, J.L. Fernandez, L. Gatignon, M. Modena, J. Osborne, J. Resta, H. Schmickler, D. Schulte, A. Seryi, J. Snuverink, G. Zamudio

IWLC 2010, October 2010

Contents

- 500 GeV and 3 TeV BDS optics, beam pipe aperture and layouts
- instrumentation: emittance, energy measurements
- tune-up dump
- Polarization measurement
- Collimation
- FFS, different L* and tuning
- QD0 specifications
- Crab cavity specifications
- magnets, quads, dipoles, specs

The 500 GeV BDS

Diagnostics

400

1/2

Collimation

Final

Focus system

0.4

Rogelio Tomás García

D [m]

Diagnostics Energy collimation Transverse Final collimation Focus system 0.45 600 1/2 $\beta_{x_{1/2}}^{1/2}$ 0.4 500 0.35 0.3 400 $\beta^{1/2} \ [m^{1/2}]$ 0.25 300 0.2 0.15 200 0.1 0.05 100 0 -0.05 0 0.5 1.5 2 2.5 3 0 1 Longitudinal location [km]

The 3 TeV BDS

Beam pipe apertures

Reference beam pipe radius 8 mm at 3 TeV and 12 at 500 GeV. Tight apertures (3-5mm) at 3.5 TeV (FFS).

CLIC - Typical Cross Section - Diameter 4500mm - Junction with Turnaround - 1:25 Draft - J.Osborne / A.Kosmicki -October 12th 2009

John Osborne : GS-SEM Civil Engineering

15 Oct 2009

The layouts and the tunnel in 2009

Not enough space for both beam lines!

The layouts and the tunnel fixed

Enough space and both beam lines aligned to the

Rogelio Tomás García

Diagnostics: emittance measurement

Diagnostics inside collimation

Layout & photon collection

CLIC compact energy measurement

BDS dumps: tune-up and main dump

Tunnel widens up to 10m in the extraction region García Technical BDS

1st option: 2 extraction points

$2^{\rm nd}$ option: 1 extraction point

Total of 4 dumps

$3^{\rm rd}$ option: use main dump

Total of 2 dumps

Polarization measurement

Polarization measurement (P. Schuler)

- IP laser at 742 m
- Standard Q-switched YAG laser (100mJ at 532nm wavelength)
- 10mrad and a laser spot size of 50 mm
- Compton electron detector at s=907 m
- 12 larger aperture dipoles (up to 300mm) are required from IP laser to the Compton electrons detector
- Resolution: 0.61% and 0.08% for measurement times of 1 s and 60 s, respectively

The collimators I

The collimators II

Name	eta_x	eta_y	D_x	a_x	a_y	Geom.	Mat.
	[m]	[m]	[m]	[mm]	[mm]		
EYSP	1406	70681	0.27	3.51	25.4	rect	Be
EYAB	3213	39271	0.42	5.41	25.4	rect	Ti
the following ×4							
YSP1	114	483.2	0.	8.	0.1	rect	Ti?
XSP1	270	101.3	0.	0.12	8.	rect	Ti?
XAB1	270	80.90	0.	1.	1.	ellip	Ti
YAB1	114	483.1	0.	1.	1.	ellip	Ti

The Be spoiler

First design. Presently under optimization.

Spoiler angle optimization (J. Resta)

8 mrad tapering angle gives better performance than 30 mrad.

Rogelio Tomás García

Temperature after beam impact

No risk of melting.

Stress from beam impact (J.L. Fernandez)

No risk of fracture, but collimators should be tested for compressive stresses up to 200 MPa.

Total and peak luminosities Vs L*

L*	total lumi	peak lumi		
m	$10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	$10^{34} { m cm}^{-2} { m s}^{-1}$		
3.5	6.9	2.5		
4.3	6.4	2.4		
6	5.0	2.1		
8	4.0	1.7		

Tuning performance for different L*

B. Dalena & G. Zamudio

		relative	absolute
_ *	prealignment	success	success
[m]	[µm]	[%]	[%]
3.5	10	65	87*
4.3	10	80	100
6	8	80	90
8	2	80	46

* very recent improvement with new design and tuning knobs

Some QD0 specifications

L*	m	3.5	4.3	6.0	8.0
Gradient	T/m	575	382	200	211
Length	m	2.7	3.3	4.7	4.2
Beam aperture	mm	3.5	6.7	8	8.5
Jitter tolerance	nm	0.15	0.15	0.2	0.18
Gradient tol	10^{-6}	5	5	_	3
Prealign.	μ m	10	10	8	2
Long. prealign.	μ m	25	-	40	-

2% luminosity sensitivity to quad offset

With corrected IP offset (J. Snuverink)

3 nm for QD0, 10-50 nm for a few quads and >50 nm for most. This gives and indication on the required BPM resolution.

BDS dipoles specifications

- BDS dipoles range between 20 and 120 Gauss
- Most need 24mm aperture (radius), few need 150mm.
- Field relative precission and jitter must be $\leq 10^{-4}$ (first promissing measurements from C. Spencer (SLAC))
- Sextupolar error at 10mm must be $\leq 6 \times 10^{-4}$
- Daniel suggested to use SC dipoles to shield stray fields

Crab Cavity (A. Dexter & G. Burt)

Crab Cavity specifications

- 12 GHz
- phase stability 0.02°
- amplitude stability 2%
- strong HOM damping
- New simulations from G. Burt show some perfomance reduction from ideal. To be followed up.

Adequate design and parameter choice needed to meet specifications.

BDS Numbers

type	quantity	total length
Dipoles	206	1.3 km
Quadrupoles	70	0.19 km
Sextupoles	18	34 m
BPMs	\approx 100	-
Collimators	18	_

Summary - The challenges

- Jitter tolerances
- Pre-alignment tolerances
- Field jitter and accuracy
- Robust tuning