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Overview

e Focus is on the need for the CDR
e Need to document impact of system design

e Need to document impact and mitigation of static imperfections

- strategy is to treat systems independently (e.g. RTML, main linac,
BDS)

e Need to document impact and mitigation of dynamic imperfections

- start with independent systems

- but need to look at interaction
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Low Emittance Preservation Chapter

e System design
- performance of lattice design (Andrea et al.)
- FBIl and vacuum (Giovanni et al.)
- resistive wall wakefields (Giovanni et al.)

e Static imperfections
- RTML (Frank et al.)

- main linac (Andrea, Daniel et al.)
- BDS (Rogelio et al.)

e Transverse dynamic imperfections

- transverse model assumptions

- fast feedback in ML and BDS (Jochem, Javier, Bernard C., Andrea,
Daniel et al.)

- long term stability (Juergen et al.))

e RF dynamic imperfections (Daniel et al.)
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Related Talks

e System Design: F. Stulle, R. Tomas, H. Garcia, B. Dalena

e Simulations: J. Reste Lopez, J, Snuverink, B. Dalena, A. Latina

e FBII: A. Oeftinger

e Stabilisation with hardware: K. Artoos, Ch. Collette, A. Jeremie, A. Gaddi
e Alignment: H. Meinaud-Durand, T. Touze

e Feedback controler design/system identification: J. Pfingstner, G. Baelik
e [P feedback: Ph. Burrows

e RF stability: G. Sterbini, A. Dubrowskyi, G. Morpurgo, Ph. Burrows, D.S.
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Beam Emittance Budgets

e For the main beam emittances a budget has been established

- €, < 5nm and ¢, = 500 nm after damping ring extraction

ey, < 10nm and €, = 600 nm after ring to main linac transport

i.e. Ae, < 5nm during transport to main linac

- €; < 660nm, ¢, < 20nm before the beam delivery system with the
growth mainly in the RTML

- i.e. Ae, < 10nm in main linac

- for the BDS the budget is a 20% spot size increase in the vertical plane
compared to perfect system

e The budgets include design, static and dynamic effects

- 50% of the growth for static imperfections
e requires 90% of the machines to perform better than the target

- 50% of the growth for dynamic imperfections

e averages out with time

e Dynamic studies need to be done across more than one system
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Dynamic Imperfections

e Luminosity loss is part of the emittance budget

Source

budget

tolerance

Damping ring extraction jitter

0.5%

kick reproducibility 0.10,

Dynamic magnetic stray fields 2% data needed

Bunch compressor jitter 1%

Quadrupole jitter in main linac 1% | 0jitter < 1.3nm, +FB

RF amplitude jitter in main linac 1% |0.075% coherent, 0.22% incoherent
RF phase jitter in main linac 1% 0.2° coherent, 0.8° incoherent
RF break down in main linac 1% rate< 3- 107" m 'pulse™!
Structure pos. jitter in main linac | 0.1% | 0jitter = 880 nm

Structure angle jitter in main linac | 0.1% | 0jiuer ~ 440 nradian

Crab cavity phase jitter 2% |0y~ 0.017°

Final doublet quadrupole jitter 2% 8@?{1,7) nm% 0.17(0.34) nm-
Other quadrupole jitter in BDS 1%

= Long list of small sources adds up

= Impact of feedback system is important
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Strategy to Evidence Beam Stability for CDR

e Perform integrated simulation of main linac, beam delivery system and
collision including

- RF phase and amplitude jitter
- a realistic model of the ground motion and technical noise
- realistic transfer through supports, including mechanical feedback

- realistic sensitivity curves and noise for ground motion sensors for
beam-based feedforward

- a realistic concept of the beam-based feedback

e Have an integrated simulation of main linac, BDS and beam-beam inter-
action

- PLACET, benchmarked with LIAR, MAD, Merlin, Lucretia, SLEPT
etc., tested at CTF3

- GUINEA-PIG, benchmarked with CAIN
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Ground Motion Models

e Some examples are
shown

- Annecy and CMS hall
floor

- models based on An-
drei Seryi's measure-
ments

e LEP/LHC tunnel is rela-
tively quiet

e Model B has similar
shape as Annecy or CMS
hall floor

-B10 if we amplify
one peak by factor 10
agrees even better

- other models exist

p(f) [m?/HZ]

le-10 — T
. CMS ——

1e-12 F e — Annecy .
: model A e

le-14 oo S model B -
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le-16 W G model B10

le-18

1le-20 |
le-22 |
le-24 |
le-26 |

f [Hz]

A. Seryi, CLIC stabilisation team
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Stability and Feedback

e Stability is required to avoid luminosity degradation of a tuned machine

- beam-based feedback will be used for low-frequency motion
- typical luminosity with feedback is loss
ALtotal — AEuncm“r (9> + AETLOise <g> + Aﬁresidual@)

AL neorr actual dynamic effect that is not yet corrected /amplified
How fast does the feedback need to be?

AL,0ise feedback tries to correct dynamic effect that is faked by diag-
nostics noise

How good does the feedback need to be?

AL, csiaual local feedback cannot correct all global effects
For how long is the feedback sufficient?
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Feedback Design

e The sensitivity to noise has been looked at for the main linac and the BDS
(J. Snuverink, J. Resta Lopez, J. Pfingstner, D.S.)

= some 10 nm resolution are required in BDS, 50 nm in main linac

e The ability to keep the luminosity for some time has been studied by J.
Snuverink

= =~ 10 % reduction of luminosity after 1000 s
- makes us confident that full integration works

= leaves several 100s for tuning for tuning

D. Schulte, Integrated studies, IWLC2010, October 2010 9



Simplified Feedback Model
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Main Linac Quadrupole Support

e Mechanical stabilisation
is essential

e Two concepts have been
developed

- soft support (An-
necy)

- rigid support (CERN)

C. Hauviller, K. Artoos, Ch. Collette et al.
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Quadrupole Support

e Heavy
mass on a

spring

Mechanical
low pass
filter

Alain Herve, Andrea Gaddi, Huber Gerwig
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Example: Pre-Isolator and ML Quadrupole

e [ransfer functions are
known

- for the final doublet
support (pre-isolator)

- for the main linac
quadrupoles

e Need to check, if model
is good enough

Transfer functions from

F. Ramos and Chr. Col-
lette

amplification

10 —

0.01 ;

0.001 . —
0001 001 01 1

0.1 ¢

%re-isolator

f 'j uad. stab.
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Pre-lsolator Result

e Consider only final dou-

blet with 5nm RMS jit-
ter

Plw) = Py

L+ (<)

wo = 407 (Ch. Collette)

e Beam-based feedback

and pre-isolator

- two different control-
ers used

= So far OK

= B. Caron et al. have bet-
ter controler

10 R T T
floor
feedback e

= 1 lpre-isolator —+ 4 W
= : both :
- pid |
S target - ‘ ‘ |
-Q- "*"0*—&66000;
ool =\

0.01 0.1 1 10 100

(') = [ Ta(w)’po(w) + px(w)dw
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Impact of Ground Motion

e Assumed a direct one-
to-one transfer to beam
line elements and simpli-

fied feedback
e Stabilisation is air hook
= A is good enough

= B is marginal
= B10 is bad

1 - ®
0.95
L o
) 0.9 A, no corr.
3 A, gstab e
= 085 B,nocorr. 4
3 B, gstab
T o8} e
A4 |
0.75 ¢ B |
0.7 |
0.1 1
gain

= A medium noisy site (B) is almost OK, if we stabilise
the final doublets
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Tolerance for Ground Motion

e Full simulation of the
machine from start of
linacs

e Determine amplitude for
10% luminosity loss

e No correction applied

tolerance A [nm]

= Sine-like  pertubations
(with respect to IP) are
more important

o1 b
- beam-beam offset 10 100 1000

10000 100000 1e+06
= Long wavelength are less wavelength [m]

harmfull
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Fixed Final Doublet

e Full simulation of the
machine from start of

| 1000 |

linacs as before :

e Final doublet plus multi- 100

poles are stabilised per- = -

fectly < '

3 10 |

= For short wavelengths, S "
sine-like  perturbations 3

are more important

= For long wavelengths, . [
. . . 1 L L | L L | L L | L L | L L L
cosine-like perturbations 10 100 1000 10000 100000 1e+06
are more important

wavelength [m]

- machine moves away
from final doublets
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Results

e Final doublet is perfectly
stabilised g
=
e Beam-based dead-beat 3
feedback
= Ground motion model A
Is worse than with beam
feedback only
- machiene drifts away
from final doublets —=
S,
= Other are also not good 5
enough <
(ALY = [ | P(w, k)T*(w)G (k)dkdw

D. Schulte, Integrated studies, IWLC2010, October 2010 18



Reason for Luminosity Loss

e Ground motion B10 is
used

e [he residual loss is still
dominated by frequen-
cies above about 10 Hz

= The residual problem are

at frequencies above =~
10 Hz

AL/L [%]

AL/L [%]

0.001 0.01 0.1 1

f[HZ]

D. Schulte, Integrated studies, IWLC2010, October 2010 19




Simplified Simulation Results

e Feedback directly applied to ground motion

- dead-beat controler used

e Mechnical stabilisation applied to everything

- only final doublet treated separately
e Ground motion model B10 used

e Results:

- only beam-based feedback: AL/L =~ 60%
- stabilised final doublet: AL/L =~ 30%
- also stabilised magnets: AL/L ~ 3%

e Intra-pulse feedback will improve this (J. Resta Lopez)
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Main Linac and BDS Mechanical Feedback/Feed-Forward

e In the main linac and BDS ground motion sensor based beam feed-forward
can be used

e Aim is to make the system cheaper

- no mechanical feedback on quadrupoles
- measurement of quadrupoles motion
- correction by orbit correctors

e Requires is good system knowledge

= Juergen's thesis

e More challenging than the local mechanical stabilisation but could be less
costly

=> could be an alternative described in CDR
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Conclusion

e Lots of work has been
done

= one more step for
CDR

= focus on documenta-
tion

e Plenty of work for the
next phase

D. Schulte, Integrated studies, IWLC2010, October 2010 22



Reserve
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Conclusion

e System design is well advanced for all lines from damping ring to IP

- some less critical systems require more work
- fast beam-ion instability and resistive wall wakefield understood

e Static imperfection studies are advanced

- focus on main linac and BDS
- main linac reaches targert performance, BDS comes close
=> finalise studies

e Dynamic imperfections are advanced

- focus on main linac and BDS
- transverse and longitudinal jitter treated separately
- integrated studies give promising results

= finalise studies
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|ssues

e Not all systems designed in RTML

= but all critical ones

e Not much on RTML static imperfections

= accepted due to lack of resources, status of BDS shows that this was
a wise decision

e BDS static imperfection mitigation does not fully achieve target

= but comes close, further work also on ATF2

e Integrated dynamic imperfections

= seems to be working now

e Integration of Annecy feedback

= need to find a solution
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Technical Noise

e Assume that technical noise has litte le-18 — -
correlation le1o | Coise |+ \
i~ w. feedback \
= jitter of each element around its NJ\; 1e-20 \ |
nominal position = le2l \\-
e Use previous fit te-22 |
0.5 le-23
0.001 001 01 1 10 100
Plw) = nm? /Hz "
1 6 [Hz]
+ (407r) 1le-08 ‘
e RMS offset can be calculated as _ B R —\
£ 1e-09 | f (Ij\IbOiSﬁ \
2 %) w. feedbac
= " (P@)T3(w) + Ns(w)) Th(w)dw £ |
o . € 1le-10 \ T
used no stabilisation for plots = \
Ilisati ' le-11 |
= Stabilisation needs to provide Tg(w.) e PR T
and Ng(w) to reduce \/(y?) to speci- f [Hz]

fication
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Beam Line Design

e We have a design for each critical beamline from the damping ring to the
Interaction point

- some system are still missing in the RTML

- but we expect them not to degrade performance if a proper design is
made

e Have studies of the fast beam-ion instability that cover all critical systems

- very good vacuum in long transport lines needed
- good vacuum in main linac needed
= specifications for the vacuum experts exist (G. Rumolo et al.)

e Resistive wall wakefields have been studied for all critical systems

- the beam pipe radius and material has been defined to avoid any issue
(G. Rumolo et al.)
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Static Imperfections

e RTML
- not too advanced
- should not be too different from ILC
= but more work is needed

e Main linac
- very important design driver
- studies show emittance preservation better than the target
= hardware specifications exist
e BDS
- very difficult to design and consequently to tune
- studies are progressing but not yet fully satisfactory
= ATF2 is important test bed

= in the long run may have to modify system design for better tuning
performance
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RF Phase and Amplitude Jitter

e WWe have a model of the impact of RF phase and amplitude errors

- in the main linac
- in the drive beam accelerator
- in the RTML
e \We developed a concept of the phase stabilisation system

e We determined the required

- stablities of klystron phase and power
- drive beam current stability

- timing reference errors

- phase monitor resolution

e The values either have been reached or are not far from existing perfor-
mances

D. Schulte, Integrated studies, IWLC2010, October 2010 29



Sources of Transverse Beam Motion

e A number of sources for transverse beam motion exists

- ground motion

- technical noise

- jitter amplification by mechanical supports
- RF gradient and phase jitter and dispersion
- beam jitter from upstream systems

- dynamic magnetic field variations

- temperature variations

e Not all are due to the technical installation

= beam stability is site dependent

= develop beam stabilisation techniques and use what a given site re-
quires

D. Schulte, Integrated studies, IWLC2010, October 2010 30



Tools to Reduce Beam Motion

e Choose a quiet site

- e.g. the LEP/LHC tunnel is relatively quiet

e Avoid technical noise

- identify sources of noise and modify their design if possible

e Avoid amplification of vibrations through supports etc.

- careful girder design
e Use mechanical feedback and feedforward
e Use motion sensor based feedforward on the beam

e Use beam-based feedback

- mainly using BPM signals
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