Overall Simulation of Luminosity Preservation

D. Schulte for the beam physics team and friends

IWLC2010, October 2010

Overview

- \bullet Focus is on the need for the CDR
- Need to document impact of system design
- Need to document impact and mitigation of static imperfections
 - strategy is to treat systems independently (e.g. RTML, main linac, BDS)
- Need to document impact and mitigation of dynamic imperfections
 - start with independent systems
 - but need to look at interaction

Low Emittance Preservation Chapter

- System design
 - performance of lattice design (Andrea et al.)
 - FBII and vacuum (Giovanni et al.)
 - resistive wall wakefields (Giovanni et al.)
- Static imperfections
 - RTML (Frank et al.)
 - main linac (Andrea, Daniel et al.)
 - BDS (Rogelio et al.)
- Transverse dynamic imperfections
 - transverse model assumptions
 - fast feedback in ML and BDS (Jochem, Javier, Bernard C., Andrea, Daniel et al.)
 - long term stability (Juergen et al.))
- RF dynamic imperfections (Daniel et al.)

Related Talks

- System Design: F. Stulle, R. Tomas, H. Garcia, B. Dalena
- Simulations: J. Reste Lopez, J, Snuverink, B. Dalena, A. Latina
- FBII: A. Oeftinger
- Stabilisation with hardware: K. Artoos, Ch. Collette, A. Jeremie, A. Gaddi
- Alignment: H. Meinaud-Durand, T. Touze
- Feedback controler design/system identification: J. Pfingstner, G. Baelik
- IP feedback: Ph. Burrows
- RF stability: G. Sterbini, A. Dubrowskyi, G. Morpurgo, Ph. Burrows, D.S.

Beam Emittance Budgets

- For the main beam emittances a budget has been established
 - $\epsilon_y \leq 5 \,\mathrm{nm}$ and $\epsilon_x = 500 \,\mathrm{nm}$ after damping ring extraction
 - $\epsilon_y \leq 10 \,\mathrm{nm}$ and $\epsilon_x = 600 \,\mathrm{nm}$ after ring to main linac transport
 - i.e. $\Delta \epsilon_y \leq 5 \,\mathrm{nm}$ during transport to main linac
 - $\epsilon_x \leq 660\,{\rm nm}$, $\epsilon_y \leq 20\,{\rm nm}$ before the beam delivery system with the growth mainly in the RTML
 - i.e. $\Delta \epsilon_y \leq 10 \, \mathrm{nm}$ in main linac
 - for the BDS the budget is a 20% spot size increase in the vertical plane compared to perfect system
- The budgets include design, static and dynamic effects
 - 50% of the growth for static imperfections
 - requires 90% of the machines to perform better than the target
 - 50% of the growth for dynamic imperfections
 - averages out with time
- Dynamic studies need to be done across more than one system

Dynamic Imperfections

• Luminosity loss is part of the emittance budget

Source	budget	tolerance
Damping ring extraction jitter	0.5%	kick reproducibility $0.1\sigma_x$
Dynamic magnetic stray fields	2%	data needed
Bunch compressor jitter	1%	
Quadrupole jitter in main linac	1%	$\sigma_{jitter} \leq 1.3 \mathrm{nm}$, +FB
RF amplitude jitter in main linac	1%	0.075% coherent, $0.22%$ incoherent
RF phase jitter in main linac	1%	0.2° coherent, 0.8° incoherent
RF break down in main linac	1%	$rate < 3 \cdot 10^{-7} m^{-1} pulse^{-1}$
Structure pos. jitter in main linac	0.1%	$\sigma_{jitter} \approx 880 \mathrm{nm}$
Structure angle jitter in main linac	0.1%	$\sigma_{jitter} \approx 440 \mathrm{nradian}$
Crab cavity phase jitter	2%	$\sigma_{\phi} \approx 0.017^{\circ}$
Final doublet quadrupole jitter	2%	$\sigma_{jitter} \approx 0.17(0.34) \mathrm{nm}$ -
		$0.85(1.7)\mathrm{nm}$
Other quadrupole jitter in BDS	1%	
• • •	?%	

 \Rightarrow Long list of small sources adds up

 \Rightarrow Impact of feedback system is important

Strategy to Evidence Beam Stability for CDR

- Perform integrated simulation of main linac, beam delivery system and collision including
 - RF phase and amplitude jitter
 - a realistic model of the ground motion and technical noise
 - realistic transfer through supports, including mechanical feedback
 - realistic sensitivity curves and noise for ground motion sensors for beam-based feedforward
 - a realistic concept of the beam-based feedback
- Have an integrated simulation of main linac, BDS and beam-beam interaction
 - PLACET, benchmarked with LIAR, MAD, Merlin, Lucretia, SLEPT etc., tested at CTF3
 - GUINEA-PIG, benchmarked with CAIN

Ground Motion Models

- Some examples are shown
 - Annecy and CMS hall floor
 - models based on Andrei Seryi's measurements
- LEP/LHC tunnel is relatively quiet
- Model B has similar shape as Annecy or CMS hall floor
 - B10 if we amplify one peak by factor 10 agrees even better
 - other models exist

A. Seryi, CLIC stabilisation team

Stability and Feedback

- Stability is required to avoid luminosity degradation of a tuned machine
 - beam-based feedback will be used for low-frequency motion
 - typical luminosity with feedback is loss

 $\Delta \mathcal{L}_{total} = \Delta \mathcal{L}_{uncorr}(g) + \Delta \mathcal{L}_{noise}(g) + \Delta \mathcal{L}_{residual}(t)$

 $\Delta \mathcal{L}_{uncorr}$ actual dynamic effect that is not yet corrected/amplified How fast does the feedback need to be?

 $\Delta \mathcal{L}_{noise}$ feedback tries to correct dynamic effect that is faked by diagnostics noise How good does the feedback need to be?

 $\Delta \mathcal{L}_{residual}$ local feedback cannot correct all global effects For how long is the feedback sufficient?

Feedback Design

• The sensitivity to noise has been looked at for the main linac and the BDS (J. Snuverink, J. Resta Lopez, J. Pfingstner, D.S.)

 \Rightarrow some $10\,nm$ resolution are required in BDS, $50\,nm$ in main linac

- The ability to keep the luminosity for some time has been studied by J. Snuverink
 - $\Rightarrow \approx 10\,\%$ reduction of luminosity after $1000\,\mathrm{s}$
 - makes us confident that full integration works
 - \Rightarrow leaves several $100\,\mathrm{s}$ for tuning for tuning

Simplified Feedback Model

- Ignore incoming beam jitter
- Assume linear system response
- Home-made controller
 - serious study of controler design started in Annecy (B. Caron et al.)
 - \Rightarrow integration needed

Main Linac Quadrupole Support

- Mechanical stabilisation is essential
- Two concepts have been developed
 - soft support (Annecy)
 - rigid support (CERN)

C. Hauviller, K. Artoos, Ch. Collette et al.

Quadrupole Support

Alain Herve, Andrea Gaddi, Huber Gerwig

Example: Pre-Isolator and ML Quadrupole

- Transfer functions are known
 - for the final doublet support (pre-isolator)
 - for the main linac quadrupoles
- Need to check, if model is good enough

Transfer functions from F. Ramos and Chr. Collette

Pre-Isolator Result

• Consider only final doublet with 5 nm RMS jitter

$$P(\omega) = P_0 \frac{1}{1 + \left(\frac{\omega}{\omega_0}\right)^6}$$

 $\omega_0 = 40\pi$ (Ch. Collette)

- Beam-based feedback and pre-isolator
 - two different controlers used

 \Rightarrow So far OK

 \Rightarrow B. Caron et al. have better controler

 $\langle y^2 \rangle = \int_0^\infty T_B(\omega)^2 p_Q(\omega) + p_N(\omega) d\omega$

Impact of Ground Motion

- Assumed a direct oneto-one transfer to beam line elements and simplified feedback
- Stabilisation is air hook
- \Rightarrow A is good enough
- \Rightarrow B is marginal

 \Rightarrow B10 is bad

 \Rightarrow A medium noisy site (B) is almost OK, if we stabilise the final doublets

Tolerance for Ground Motion

- Full simulation of the machine from start of linacs
- Determine amplitude for 10% luminosity loss
- No correction applied
- ⇒ Sine-like pertubations (with respect to IP) are more important
 - beam-beam offset
- \Rightarrow Long wavelength are less harmfull

Fixed Final Doublet

- Full simulation of the machine from start of linacs as before
- Final doublet plus multipoles are stabilised perfectly
- ⇒ For short wavelengths, sine-like perturbations are more important
- \Rightarrow For long wavelengths, cosine-like perturbations are more important
 - machine moves away from final doublets

Results

- Final doublet is perfectly stabilised
- Beam-based dead-beat feedback
- ⇒ Ground motion model A is worse than with beam feedback only
 - machiene drifts away from final doublets
- \Rightarrow Other are also not good enough

$$\langle \Delta L \rangle = \int \int P(\omega,k) T^2(\omega) G(k) dk d\omega$$

Reason for Luminosity Loss

- Ground motion B10 is used
- The residual loss is still dominated by frequencies above about 10 Hz
- ⇒ The residual problem are at frequencies above \approx $10 \, \text{Hz}$

Simplified Simulation Results

- Feedback directly applied to ground motion
 - dead-beat controler used
- Mechnical stabilisation applied to everything
 - only final doublet treated separately
- \bullet Ground motion model B10 used
- Results:
 - only beam-based feedback: $\Delta {\cal L} / {\cal L} \approx 60\%$
 - stabilised final doublet: $\Delta \mathcal{L}/\mathcal{L} \approx 30\%$
 - also stabilised magnets: $\Delta \mathcal{L}/\mathcal{L} \approx 3\%$
- Intra-pulse feedback will improve this (J. Resta Lopez)

Main Linac and BDS Mechanical Feedback/Feed-Forward

- In the main linac and BDS ground motion sensor based beam feed-forward can be used
- Aim is to make the system cheaper
 - no mechanical feedback on quadrupoles
 - measurement of quadrupoles motion
 - correction by orbit correctors
- Requires is good system knowledge

 \Rightarrow Juergen's thesis

- More challenging than the local mechanical stabilisation but could be less costly
 - \Rightarrow could be an alternative described in CDR

Conclusion

- Lots of work has been done
 - \Rightarrow one more step for CDR
 - \Rightarrow focus on documentation
- Plenty of work for the next phase

Conclusion

- System design is well advanced for all lines from damping ring to IP
 - some less critical systems require more work
 - fast beam-ion instability and resistive wall wakefield understood
- Static imperfection studies are advanced
 - focus on main linac and BDS
 - main linac reaches targert performance, BDS comes close
 - $\Rightarrow \mathsf{finalise} \ \mathsf{studies}$
- Dynamic imperfections are advanced
 - focus on main linac and BDS
 - transverse and longitudinal jitter treated separately
 - integrated studies give promising results
 - $\Rightarrow \mathsf{finalise} \ \mathsf{studies}$

Issues

- \bullet Not all systems designed in RTML
 - \Rightarrow but all critical ones
- Not much on RTML static imperfections
 - \Rightarrow accepted due to lack of resources, status of BDS shows that this was a wise decision
- BDS static imperfection mitigation does not fully achieve target

 \Rightarrow but comes close, further work also on ATF2

- Integrated dynamic imperfections
 - \Rightarrow seems to be working now
- Integration of Annecy feedback
 - \Rightarrow need to find a solution

Technical Noise

- Assume that technical noise has litte correlation
 - \Rightarrow jitter of each element around its nominal position
- Use previous fit

 $P(\omega) = \frac{0.5}{1 + \left(\frac{\omega}{40\pi}\right)^6} \,\mathrm{nm^2/Hz}$

- RMS offset can be calculated as $\langle y^2\rangle = \int_0^\infty \left(P(\omega)T_S^2(\omega) + N_S(\omega)\right)T_B^2(\omega)d\omega$ used no stabilisation for plots
- $\Rightarrow {\rm Stabilisation \ needs \ to \ provide \ } T_S(\omega) \\ {\rm and \ } N_S(\omega) \ {\rm to \ reduce \ } \sqrt{\langle y^2 \rangle} \ {\rm to \ specification} \\ {\rm fication} \end{cases}$

Beam Line Design

- We have a design for each critical beamline from the damping ring to the interaction point
 - some system are still missing in the RTML
 - but we expect them not to degrade performance if a proper design is made
- Have studies of the fast beam-ion instability that cover all critical systems
 - very good vacuum in long transport lines needed
 - good vacuum in main linac needed
 - \Rightarrow specifications for the vacuum experts exist (G. Rumolo et al.)
- Resistive wall wakefields have been studied for all critical systems
 - the beam pipe radius and material has been defined to avoid any issue (G. Rumolo et al.)

Static Imperfections

- RTML
 - not too advanced
 - should not be too different from ILC
 - \Rightarrow but more work is needed
- Main linac
 - very important design driver
 - studies show emittance preservation better than the target
 - \Rightarrow hardware specifications exist
- BDS
 - very difficult to design and consequently to tune
 - studies are progressing but not yet fully satisfactory
 - \Rightarrow ATF2 is important test bed
 - \Rightarrow in the long run may have to modify system design for better tuning performance

RF Phase and Amplitude Jitter

- We have a model of the impact of RF phase and amplitude errors
 - in the main linac
 - in the drive beam accelerator
 - in the RTML
- We developed a concept of the phase stabilisation system
- We determined the required
 - stablities of klystron phase and power
 - drive beam current stability
 - timing reference errors
 - phase monitor resolution
- The values either have been reached or are not far from existing performances

Sources of Transverse Beam Motion

- A number of sources for transverse beam motion exists
 - ground motion
 - technical noise
 - jitter amplification by mechanical supports
 - RF gradient and phase jitter and dispersion
 - beam jitter from upstream systems
 - dynamic magnetic field variations
 - temperature variations

- . . .

- Not all are due to the technical installation
 - \Rightarrow beam stability is site dependent
 - \Rightarrow develop beam stabilisation techniques and use what a given site requires

Tools to Reduce Beam Motion

- Choose a quiet site
 - e.g. the LEP/LHC tunnel is relatively quiet
- Avoid technical noise
 - identify sources of noise and modify their design if possible
- Avoid amplification of vibrations through supports etc.
 - careful girder design
- Use mechanical feedback and feedforward
- Use motion sensor based feedforward on the beam
- Use beam-based feedback
 - mainly using BPM signals