

Institut de Tècniques Energètiques

inte

UNIVERSITAT POLITÈCNICA DE CATALUNYA

ATF2 Alternative lattices.

Presenter: Edu Marin (Phd Student) eduardo.marin.lacoma@cern.ch

Acknowledgements : Glen White, Rogelio Tomas

21.10.2010

CLIC Workshop 2010

1

PLAN OF THE TALK

- 1. The ATF2 Nominal and Ultra-Low β^* Lattice.
- 2. Multipoles effect
- 3. Possible Solutions

1. Alternative lattices

- 4. Squeeze sequence
- 5. Feasibility of the ATF2 Ultra-Low β_v^* Lattice.
 - 1. Beam Size and powering along the beam line.
 - 2. Tuning the ATF2 Ultra-Low β_v^* Lattice.

1.Knobs for the ATF2 Intermediate lattice.

2. Tuning results.

- 6. Swapping the magnets
- 7. Quad shunting technique
- 8. Conclusions and Future Plans.

ATF2 LATTICES

ATF2-Ultra low β_v^* v4. No Multipole present.

ATF2 Nominal Lattice σ_x= 3.2 μm

 σ_v = 37.0 nm (rms) $\sigma_v = 35.0 \text{ nm} (\text{core})$ β₋= 3.9 mm $\beta_v = 0.1 \text{ mm}$ η_x = -2.8 μ m

ATF2 Ultra-low β^* Lattice

σ = 3.8 μm σ_{v} = 22.9 nm (rms) $\sigma_v = 18.9 \text{ nm} \text{ (core)}$ $\beta_{\rm x}$ = 4.0 mm β_v= 25.1 μm η_x= 0.01 μm

Project	L* [m]	β _y * [μm]	ξ_{y}
ATF2 Nominal	1.0	100	~19000
ILC Desgin	3.5	400	~15000
ATF2 Ultra-low	1	25	~76000
CLIC 3 TeV	3.5	90	~63000

MULTIPOLES IN THE ATF2-FFS

2.1.

21.10.2010

2.2.

MULTIPOLES EFFECT

ATF2- β_y =100um β_x =4.0mm. With multipoles 180 order 1 160 order 2 -----140 lP σ_y [nm] order 3 ····· 120 order 4 00 order 5 80 60 40 20 2.5 3 3.5 4.5 5 5.5 6 4

ATF2 Ultra-low β^* Lattice

 $σ_x = 3.9 \mu m$ $σ_y = 180 nm (rms)$ $σ_y = 100 nm (shintake)$ $σ_y = 38 nm (core)$

ATF2 Nominal Lattice

 $σ_x = 5.5 \mu m$ $σ_y = 174 nm (rms)$ $σ_y = 102 nm (Shintake)$ $σ_y = 51 nm (core)$

21.10.2010

3.

POSSIBLE SOLUTIONS

The possible cures in order to accommodate the existing multipoles could be:

- Decrease β_x at QF1FF (designing a new lattice by strengths and sextupole tilts)
- Run the machine at lower horizontal emittance
- Replace the Normal conducting QF1 by a Super conducting magnet (*)
- Swap the magnets

(*) not covered in this talk. For further details refer to the following presentation:

Impact on the beam size using a SC QF1 on the ATF2 Ultra-low β^* lattice, during the ATF2 SC meeting in October 2009.

3.1 ALTERNATIVE LATTICES: DECREASE β_x at QF1

ATF2 Ultra-low Lattice

 $σ_x = 5.3 \mu m$ $σ_y = 29.0 nm$ $β_x = 10 mm$ $β_y = 25 \mu m$

ATF2 Nominal Lattice

$$\sigma_x = 5.3 \ \mu m$$
 $\sigma_x = 4.5 \ \mu m$
 $\sigma_y = 41.5 \ nm$ $\sigma_y = 41.7 \ nm$
 $\beta_x = 10 \ mm$ $\beta_x = 8 \ mm$
 $\beta_y = 100 \ \mu m$

All these lattices are available at: http://clicr.web.cern.ch/CLICr/ATF2/New_Multipoles/ 21.10.2010 CLIC Workshop 2010

4.

SQUEEZE SEQUENCE

To reach a successful tuning for the Ultra low lattice is recommended to follow a squeeze sequence.

In these sense, 2 Intermediate lattices (β_y = 42 μm & β_y = 75 μm) have been worked out.

Since the tuning difficulty scales as $\approx (\beta_y)^{-\frac{1}{2}} \longrightarrow$ unfortunately the ATF2 $\beta_y = 42\mu m$ becomes the proper lattice.

21.10.2010

CLIC Workshop 2010

FEASIBILITY OF THE INTERMEDIATE LATTICE 5.1

9

5.2.

TUNING CONDITIONS

- Statistical Study formed by 100 different seeds.
- All Quads & Sex. are misaligned according to a random Gaussian distribution within 30 µm
- All Quads & Sext are tilted according to a random Gaussian distribution within 300 µmrad
- Initial $\sigma_v < 900 \text{ nm}$
- Tuning via MAD-X & MAPCLASS using Simplex algorithm

The variables are:

- Misalignments
- Tilts
- Magnet Strengths

The tuning process includes:

- Measurement error: 10%
- Magnets mispowerings (10⁻⁴)
- Multipoles

Constraint:

minimize σ_v evaluated as the BSM does

5.2.1 Knobs for the β -functions, dispersion and beam size

Displacing sextupoles in the vertical direction, a set of knobs have been obtained, with the aim to control the twiss functions and the beam sizes.

CLIC Workshop 2010

5.2.2.

TUNING RESULTS

SWAPPING THE MAGNETS

The new multipoles are scaled from the measured ones.

21.10.2010

6.

CLIC Workshop 2010

QUAD SHUNTING TECHNIQUE

• Two sets of measurements were applied as an alignment technique:

- Shunting 2 quadrupoles
- Shunting and moving only 1quadrupole
- Measurement description:

7.1.

QUAD SHUNTING TECHNIQUE

• Comparison of the two different kind of measurements:

	1 st Measurement Type 1	2 nd Measurement Type 1*	3 ^{dt} Measurement Type 2	4 th Measurement Type 2
Offset [µm]	110 ± 40	135 ± 86	114 ± 18	510 ± 1.6

7.2.

QUAD SHUNTING TECHNIQUE

Data analysis:

7.3.

8. CONCLUSIONS & FUTURE PLANS

- All the multipoles of each single magnet in the FFS are introduced into the model.
- A new Nominal and Ultra-low lattices have been obtained. Still work ongoing for improvements
- A first statistical tuning study shows that 75% of the seeds reach a final σ_y <50 nm.
- The moving alignment technique reaches a better precision.

To be done...

- Concerning the lattices, try to decrease β_x at the IP, with the objective to obtain a more suitable ratio σ_y/σ_x
- Implement the squeeze tuning technique
- Obtain the coupling knobs.
- Understand the discrepancies between the alignment measurements