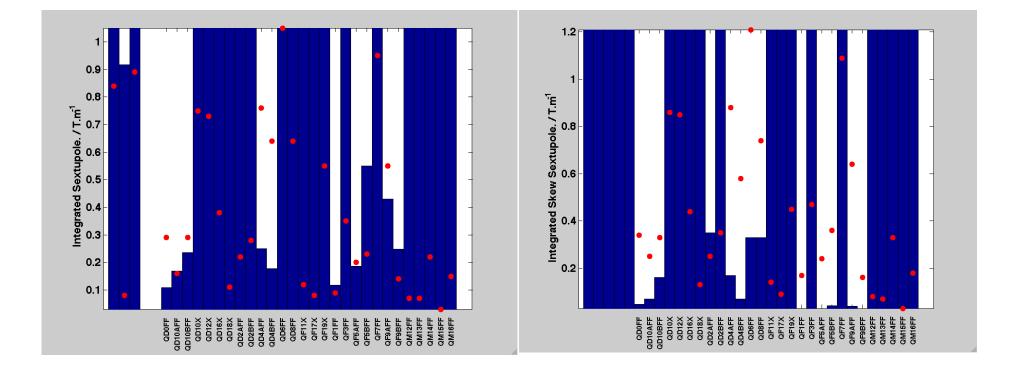
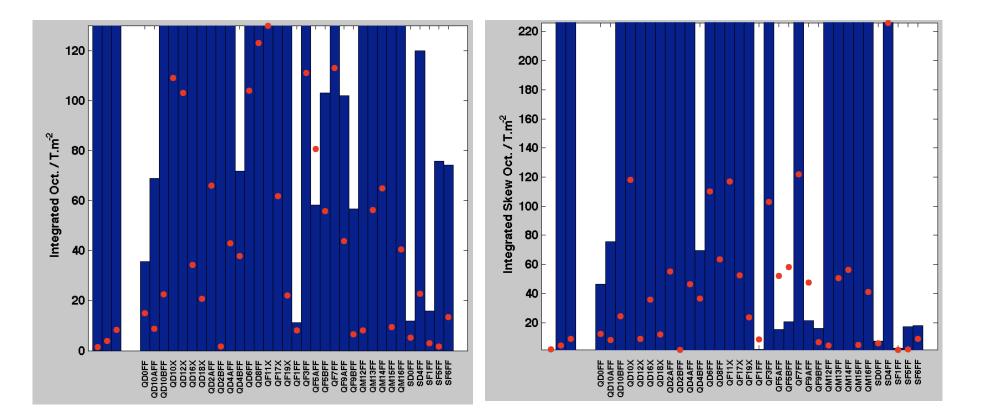
Analysis of ATF2 EXT & FFS Multipoles and Re-tuning Efforts

Glen White, Mark Woodley / SLAC, Edu Marin, Rogelio Tomas / CERN Oct 12 2010

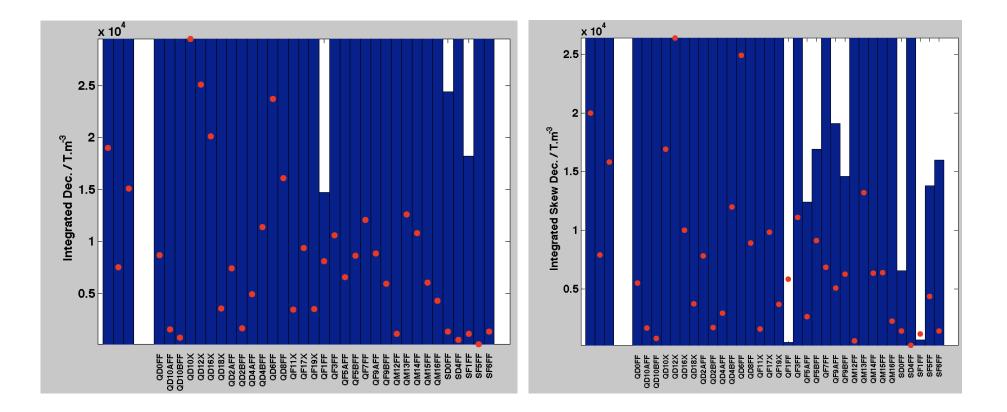


- Incorporate measured multipoles for all quads, bends and sextupoles in EXT and FFS into ATF2 simulation.
- With nominal 4mm / 0.1mm β_x / β_y optics, tracked vertical beam size at IP is 220nm (RMS) / 65nm (Gaussian Fit)
- Calculated multipole sensitivities for all magnets, show measured values which exceed stated sensitivities.
- Re-optimise non-linear matching of optics including measured multipoles.
- Run tuning simulation with re-tuned optics and observe and compare expected performance.

Multipole Sensitivities


- Define sensitivity for multipole components as magnitude of component in question that causes RMS IP vertical beam size to grow by 1nm.
- Multipoles are quoted as integrated strengths in SI units with magnets powered according to nominal optics configuration.

Sextupole Multipole Fields


 Sext & Skew-Sext multipole strength measurements and sensitivities

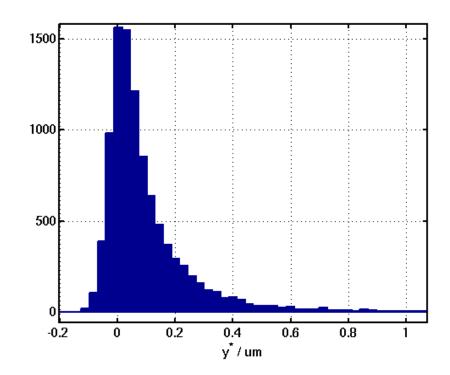
Octupole Multipole Fields

 Oct & Skew-Oct multipole strength measurements and sensitivities

Decupole Multipole Fields

 Dec & Skew-Dec multipole strength measurements and sensitivities

Magnet Multipole Measurements which Exceed Sensitivity Requirements


Sext (T.m⁻¹)

- QD0FF: meas=0.29; sens=0.11
- QD10BFF: meas=0.29; sens=0.24
- QD4AFF: meas=0.76; sens=0.25
- QD4BFF: meas=0.64; sens=0.18
- QF5AFF: meas=0.20; sens=0.19
- QF9AFF: meas=0.55; sens=0.43
- Skew Sext (T.m⁻¹)
- QD0FF: meas=0.34; sens=0.048
- QD10AFF: meas=0.25; sens=0.069
- QD10BFF: meas=0.33; sens=0.16
- QD4AFF: meas=0.88; sens=0.17
- QD4BFF: meas=0.58; sens=0.069
- QD6FF: meas=1.21; sens=0.33
- QD8FF: meas=0.74; sens=0.33
- QF1FF: meas=0.17; sens=0.0024
- QF5AFF: meas=0.24; sens=0.025
- QF5BFF: meas=0.36; sens=0.041
- QF9AFF: meas=0.64; sens=0.04
- QF9BFF: meas=0.16; sens=0.025

- Oct (T.m⁻²)
 - QF5AFF: meas=80.6; sens=58.2
- Skew Oct (T.m⁻²)
 - QF1FF: meas=8.33; sens=1.64
 - QF5AFF: meas=52.3; sens=15.5
 - QF5BFF: meas=58.0; sens=20.8
 - QF9AFF; meas=47.4; sens=21.4
- Skew Dec (T.m⁻³)
 - QF1FF: meas=5830; sens=454
 - SF1FF: meas=1170; sens=685
- 12-pole (T.m⁻⁴)
 - QF1FF: meas=1.21E7; sens=2.05E6
- Skew 12-pole (T.m⁻⁴)
 - QF1FF: meas=6.66E6; sens=1.29E5
 - QF5AFF: meas=1.41E7; sens=8.87E6

Tracking Results

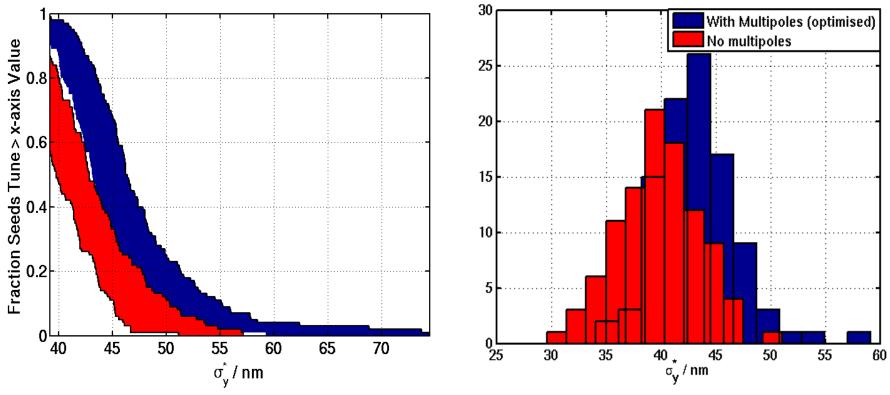
- With no other errors, track beam through model lattice with measured multipole magnitude and angles added (Lucretia).
- σ_y = 220nm (RMS) / 65nm (Fit)
- σ_x = 4.1um (RMS) / 3.1um (Fit)
- Both x and y beam distributions at IP highly non-gaussian.

Optimisation of Optics Including Multipole Data

- MAPCLASS used to rematch and optimise lattice including multipole fields to try and recover nominal IP vertical beam size.
- Quantities on the right are rematched values different from initial nominal lattice. Note the inclusion of design sextupole rolls.
- The vertical beta function was left unchanged at 0.1mm, but horizontal had to be increased by a factor of 2.5 to 1cm.

ksf6ff =	45.02265407 ;
ksf5ff =	-26.9434435 ;
ksd4ff =	152.5391892 ;
ksf1ff =	-22.38137452 ;
ksd0ff =	41.20558391 ;
sf6tilt =	-0.01246444319 ;
sf5tilt =	0.009102481889;
sd4tilt =	-0.01427832723 ;
sf1tilt =	-0.04258038011;
sd0tilt =	-0.03147326184 ;
kqm16ff =	2.924170943 ;
kqm15ff =	-0.2795777162 ;
kqm14ff =	-4.768046545 ;
kqm13ff =	4.508634198 ;
kqm12ff =	1.469984966 ;
kqm11ff =	0.4389927394 ;
kqd10ff =	-1.465121307;
kqf9ff =	1.853857007 ;
kqd8ff =	-3.074271679 ;
kqf7ff =	2.717880616 ;
kqd6ff =	-3.050190084 ;
kqf5ff =	1.949024326 ;
kqd4ff =	-1.555892097 ;
kqf3ff =	2.830240649 ;
kqd2aff =	-1.361293174 ;
kqd2bff =	-1.369873894 ;
kqf1ff =	1.566624722 ;
kqd0ff =	-2.87401948 ;

Optimisation Results

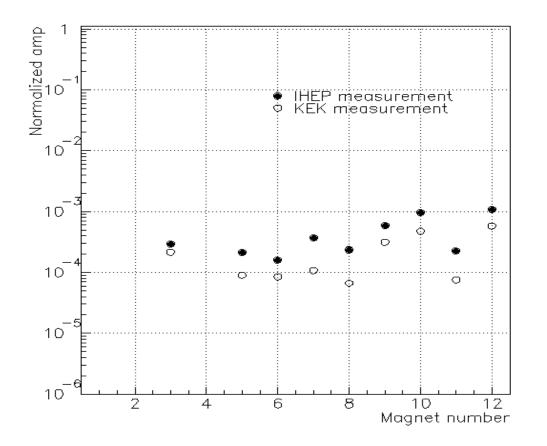

ATF2 UL β_x =10mm, β_y =100 μ m All multipoles. 42 order 1 Lucretia Tracking IP sizes 41 order 2 [uu] ^{A0} 39 ^A38 b 37 dl 36 order 3 ······ order 4 σ_x = 4.5um (RMS) 4.4um (Fit) order 5..... $\sigma_v^2 = 44$ nm (RMS) 42nm (Fit) 36 35 34 5 2.53 3.54 4.5 5.56 5.5PROFESSION OF STREET, STRE order 1 5 order 2 order 3 ······ P σ_x [μm] 4.5 order 4 order 5 4 3.5 3 2.53 3.5 4 4.5 5 5.56 $\gamma \epsilon_x [\mu m]$

- Graph shows MADX/PTC beam size calculation with re-matched optics and variable horizontal emittance.
- Box shows tracking results with Lucretia (emittance = 5um / 30nm Normalised x / y)

Multi-seed ATF2 Tuning Simulation with Multipoles and Optimised Lattice

- Use Lucretia Monte Carlo model with
 standard set of machine error parameters
- Apply standard tuning process with reoptimised lattice and compare performance with multipole-free lattice configuration.
- Look to see if presence of multipoles and increased aspect ratio at IP has deleterious effect on tuning performance.

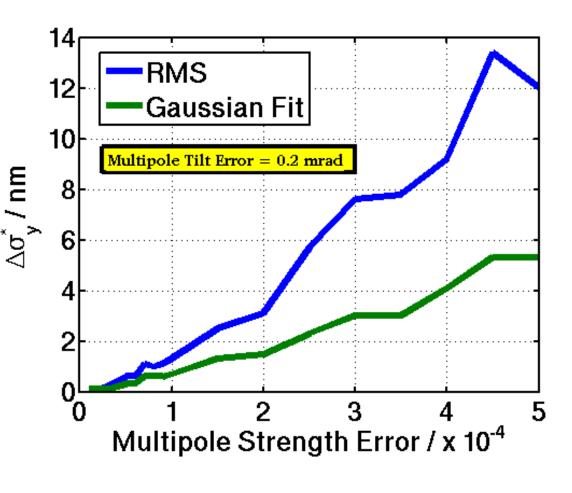
Tuning Simulation Results



- 100 seed tuning simulation for nominal lattice, with and without multipoles
- Histogram on right for fitted IP size
- Left plot shows range between RMS and fitted sizes.

Tuning Simulation Results

- Nominal lattice (no multipoles)
 - No errors, 37.0 nm (Fit) 38.0 nm (RMS)
 - With errors and tuning
 - 50% seeds < 39.6 nm (Fit) 42.7 nm (RMS)
 - 90% seeds < 44.7 nm (Fit) 50.0 nm (RMS)
- Optimised lattice with multipoles
 - No errors, 42 nm (Fit) 44 nm (RMS)
 - With errors and tuning
 - 50% seeds < 43.0 nm (Fit) 46.1 nm (RMS)
 - 90% seeds < 47.2 nm (Fit) 54.5 nm (RMS)


Multiupole Measurement Errors

- From talk given by Masuzawa-san et al (Aug 2006)
- Reproducibility of multipole amplitudes at ~few 10^-4 level seems reasonable.
- Error on multipole tilt angle measurement assumed to be ~0.2mrad.

Multipole Measurement Tolerances

- Use RMS error of between 0.1-5 x 10⁻⁴ (error on measurement of Bn/B2) and 0.2 mrad.
 - O(few mrad) still OK
- Apply RMS distribution of errors to all multipole components for all measured magnets.
- Plot RMS spread of tracked beam sizes for 100 seeds of error configurations.
- These are "bare" beam size measurements.
 The tuning process will ameliorate some of this effect.

Swap Around QEA Magnets?

- Swapping around magnets as specified on the right gives an optimal configuration of multipole components amongst QEA quads.
- IP vertical beam size in this configuration 90nm (RMS) / 50nm (Fit).
- With this configuration 4 QEA's have multipole components that exceed sensitivity specifications, but less so than before. Most of remaining beam size growth from final doublet system as before.
 - QD10AFF
 - QF5AFF
 - QF9AFF
 - QF9BFF
- Re-optimisation studies with this deck continuing. Can this deck be optimised with nominal sigma_y and smaller sigma_x?
- Full list of multipole components in this configuration in accompanying excel sheet.

QM13FF <--> QF9AFF QF17X <--> QF5AFF QM15FF <--> QF5BFF **QF11X <--> QD4BFF QD18X <--> QF9BFF QM12FF <--> QD4AFF** QM14FF <--> QD6FF **QM16FF <--> QD10AFF QD8FF <--> QD16X QD10BFF <--> QM14R2**

- The measured multipole fields of the ATF2 EXT and FFS magnets were included into our models, optimised and the expected tuning performance analysed and presented.
- The deleterious effects of the multipoles can be mostly mitigated by rematching the optics at the expense of increasing the IP horizontal beam size and increasing the x:y beam size ratio.
- The tuning performance of the machine in the presence of errors is unchanged by the existence of the multipole fields with the re-optimised lattice.
- Matters may well improve if we swap around some QEA magnets and/or perform a program of re-measurement and shimming of magnets.