Status of High Gradient Tests
 of Single Cell Standing Wave Structures at SLAC

Valery Dolgashev, SLAC National Accelerator Laboratory

International Workshop on Linear Colliders 2010, October 18-21th, 2010, Geneva, Switzerland CERN, CICG

Outline

- Motivation
- Planned experiments
- Recent results
-Geometry
-Hard materials

This work is made possible by the efforts of SLAC's

- S. Tantawi (US High Gradient Collaboration spokesperson), A. Yeremian (day-to-day operation and coordination of TS4, etc.),
J. Lewandowski (rf measurements, software and TS6-TS8 operation, etc.) of Accelerator Technology Research
- E. Jongewaard, C. Pearson, A. Vlieks, J. Eichner, D. Martin, C. Yoneda, L. Laurent, A. Haase, R. Talley, J. Zelinski, J. Van Pelt, R. Kirby and staff of Klystron Lab.
- Z. Li, Advanced Computation

In close collaboration with:

- Y. Higashi, KEK, Tsukuba, Japan
- B. Spataro, INFN, Frascati, Italy

Single Cell Accelerator Structures

Goals

- Study rf breakdown in practical accelerating structures: dependence on circuit parameters, materials, cell shapes and surface processing techniques

Difficulties

- Full scale structures are long, complex, and expensive

Solution

- Single cell standing wave (SW) structures with properties close to that of full scale structures
- Reusable couplers

We want to predict breakdown behavior for practical structures

Reusable coupler: TM_{01} Mode Launcher

Pearson's RF flange

Cutaway view of the mode launcher

Two mode launchers
Surface electric fields in the mode launcher $E_{\max }=49 \mathrm{MV} / \mathrm{m}$ for 100 MW

3C-SW-A5.65-T4.6-Cu-KEK\#2 installed in the lead box, 15 November 2007

High Power Tests of Single Cell Standing Wave Structures

Tested

- Low shunt impedance, $a /$ /lambda $=0.215,1 C-S W-A 5.65-T 4.6-C U, 5$ tested
-Low shunt impedance, TiN coated, 1C-SW-A5.65-T4.6-Cu-TiN, 1 tested
-Three high gradient cells, low shunt impedance, 3C-SW-A5.65-T4.6-Cu, 2 tested
-High shunt impedance, elliptical iris, $a / l a m b d a=0.143,1 C-S W-A 3.75-T 2.6-C u, 1$ tested
\bullet High shunt impedance, round iris, $a /$ lambda $=0.143,1 C-S W-A 3.75-T 1.66-C u, 1$ tested
\bullet Low shunt impedance, choke with 1 mm gap, 1C-SW-A5.65-T4.6-Choke-Cu, 2 tested
- Low shunt impedance, made of CuZr, 1C-SW-A5.65-T4.6-CuZr, 1 tested
- Low shunt impedance, made of CuCr, 1C-SW-A5.65-T4.6-CuCr, 1 tested
- Highest shunt impedance copper structure 1C-SW-A2.75-T2.0-Cu, 1 tested
-Photonic-Band Gap, low shunt impedance, 1C-SW-A5.65-T4.6-PBG-Cu, 1 tested
- Low shunt impedance, made of hard copper 1C-SW-A5.65-T4.6-Clamped, 1 tested
-Low shunt impedance, made of molybdenum 1C-SW-A5.65-T4.6-Mo, 1 tested
-Low shunt impedance, hard copper electroformed 1C-SW-A5.65-T4.6-Electroformed-Cu, 1 tested
-High shunt impedance, choke with 4 mm gap, $1 \mathrm{C}-$ SW-A3.75-T2.6-4mm-Ch-Cu, 2 tested
- High shunt impedance, elliptical iris, $a / l a m b d a=0.143,1 C-S W-A 3.75-T 2.6-6 N C u, 1$ tested
- High shunt impedance, elliptical iris, $a / l a m b d a=0.143,1 C-S W-A 3.75-T 2.6-6 N-H I P-C u, 1$ tested
- High shunt impedance, elliptical iris, a/lambda $=0.143,1 C-S W-A 3.75-T 2.6-7 N-C u, 1$ tested
-Low shunt impedance, made of CuAg, 1C-SW-A5.65-T4.6-CuAg-SLAC-\#1, 1 tested
- High shunt impedance hard CuAg structure 1C-SW-A3.75-T2.6-LowTempBrazed-CuAg, 1 tested
- High shunt impedance soft CuAg, 1C-SW-A3.75-T2.6-CuAg, 1 tested
-High shunt impedance hard CuZr, 1C-SW-A3.75-T2.6-Clamped-CuZr, 1 tested
- High shunt impedance dual feed side coupled, 1C-SW-A3.75-T2.6-2WR90-Cu, 1 tested
\bullet High shunt impedance single feed side coupled ,1C-SW-A3.75-T2.6-1WR90-Cu-SLAC-\#1, 1 tested
- High shunt impedance hard CuCr, 1C-SW-A3.75-T2.6-Clamped-CuCr, 1 tested

Now $32^{\text {nd }}$ test is about to start, single feed side coupled

Next experiments, as for October 2010

New diagnostics:

High shunt impedance, full choke cell with a viewport, 1C-SW-A3.75-T2.6-Ch-View-Port-Cu Geometry tests:
Photonic-Band Gap, low shunt impedance, elliptical rods, 1C-SW-A5.65-T4.6-PBG2-Cu High shunt impedance, triple choke, copper, 1C-SW-A3.75-T2.6-4mm-TripleCh-Cu High shunt impedance, reduced magnetic field, copper 1C-SW-A3.75-T2.2-Cu (see Jeff Neilson's talk)
Materials:
High shunt impedance, made of hard CuAg, 1C-SW-A3.75-T2.6-Clamped-CuAg, Highest shunt impedance, made of hard CuCr, CuAg, CuZr, 1C-SW-A2.75-T2.0-Clamped-CuCr, CuAg, CuZr
High shunt impedance, triple choke, Molybdenum, 1C-SW-A3.75-T2.6-4mm-TripleCh-Mo High shunt impedance, Cu-Mo, 1C-SW-A3.75-T2.6-Cu-Mo
High shunt impedance, Cu-Stainless Steel, 1C-SW-A3.75-T2.6-Cu-SUS
Highest shunt impedance, cryogenic test, 1C-SW-A2.75-T2.0-Cryo-Cu High shunt impedance, Stainless Steel coated with copper, 1C-SW-A3.75-T2.6-SUS-Coated-Cu Reproducibility tests:
High shunt impedance, round iris, 1C-SW-A3.75-T1.66-Cu
Three high gradient cells, low shunt impedance, 3C-SW-A5.65-T4.6-Cu

New diagnostics

In-situ microscopic observation of surface change and rf breakdowns: Full cell choke and two view ports 1C-SW-A3.75-T2.6-Ch-View-Port-Cu-SLAC-\#1,2

Solid model: David Martin, 28 April 2010

Geometry and material test

Structure joining techniques that avoid high temperature treatment

1C-SW-A3.75-T2.2-Cu,Mo-KEK, similar configuration is under development in INFN-Frascati

1C-SW-A3.75-T2.6-Clamped-CuAg-KEK

Material test

1C-SW-A3.75-T2.6-Clamped-CuAg-KEK

Material test

1C-SW-A3.75-T2.60-Cu-SUS-Clamped-KEK

Material test 1C-SW-A3.75-T2.60-Cu-Mo-Clamped-KEK

Material test, electropolishing

Material testing,

Mo spattering on Cu

Schematic diagram of a DC magnetron plasma source

SEM Picture of copper dish machined at very low roughness sputtered with 300 nm of Molybdenum after a thermal treatment of 2 hours at 300 C .

Results

- Geometry test
1C-SW-A3.75-T2.6-1WR90-Cu-SLAC-\#1
- Material test

1C-SW-A3.75-T2.6-Clamped-CuCr-SLAC-\#1

Geometry test

High shunt-impedance single-feed sidecoupled
1C-SW-A3.75-T4.6-1WR90-Cu-SLAC-\#1

Side-coupled ingle feed 1C-SW-A3.75-T2.6-1WR90-Cu-SLAC-\#1
Calculating Zenghai's geometry with HFSS, driven, 10 MW input

$\underset{(\text { SLANS 1C-SW-T3.75-A2.6-Cu } 668.0 \mathrm{kA} / \mathrm{m})}{\text { Maximum magnetic field } 800 \mathrm{kA} / \mathrm{m}, \mathrm{H}_{1 \text { WR90 }} / \mathrm{H}_{\text {SLANS }}=} \frac{800}{668}=1.198$

Maximum electric field $412 \mathrm{MV} / \mathrm{m}, \mathrm{E}_{\text {1WR90 }} / \mathrm{E}_{\text {SLANS }}=\frac{412}{398.9}=1.033$ (SLANS 398.9 MV/m)

Maximum on axis peak electric field $385 \mathrm{MV} / \mathrm{m}$, field balance

Resonant frequeency 11.4197 GHz

$$
\begin{aligned}
& \text { Qo }:=2 \cdot 4.309 \times 10^{3} \\
& \text { Qo }=8.618 \times 10^{3}
\end{aligned}
$$

Single-feed side-coupled structure 1C-SW-A3.75-T2.6-1WR90-Cu-SLAC-\#1, Dependence of breakdown rate for different pulse length of flat part of the shaped pulse.

Comparison of side-coupled copper structure with onaxis coupled copper structures of same iris geometry (1C-SW-A3.75-T2.6-Cu), shaped pulse with 150 ns flat part

No obvious increase of breakdown rate due to increased pulse heating on coupler edges.

Comparison of one side-coupled copper structure with three on-axis coupled copper structures of same iris geometry (1C-SW-A3.75-T2.6-Cu), shaped pulse with 150 ns flat part

Coupling cell of 1C-SW-A3.75-T4.6-1WR90-Cu-SLAC-\#1

Coupling cell of 1C-SW-A3.75-T4.6-1WR90-Cu-SLAC-\#1

Coupling cell of 1C-SW-A3.75-T4.6-1WR90-Cu-SLAC-\#1

Coupling cell of 1C-SW-A3.75-T4.6-1WR90-Cu-SLAC-\#1

Material test

 High shunt-impedance, hard-CuCr,$$
\begin{gathered}
\text { 1C-SW-A3.75-T2.6-Clamped-CuCr- } \\
\text { SLAC-\#1 }
\end{gathered}
$$

Clamped structure assembly

High shunt impedance structure made of hard CuCr , 1C-SW-A3.75-T2.6-Clamped-CuCr-SLAC- \#1,
Dependence of breakdown rate for different pulse length of flat part of the shaped pulse.

No obvious correlation with pulse heating.

Comparison of two structures same geometry, one brazed Cu another clamped CuCr

Shaped pulse with 150 ns flat part

Comparison of two clamped structures with the same geometry made of hard CuCr and CuZr

Shaped pulse with 150 ns flat part

Shaped pulse with 600 ns flat part

Main Results

High-shunt-impedance side-coupled structure had about the same breakdown rate as on-axis-coupled structure with peak pulse heating about 40% higher.

High-shunt-impedance structure made of hard CuCr had similar breakdown rate to hard CuZr structure and higher breakdown rate than the brazed Cu structure.

Discussion

Pulse heatina or Alexei's Im(P surf)?

Summary of breakdown rate vs. pulse heating for different structures, including TD18 and PBG

Summary

We have successful international collaboration on testing program and that continuously producing new information on breakdown physics.

Parameters of periodic structures, Eacc=100 MV/m

Name	$\begin{gathered} \text { A2.75- } \\ \text { T2.0-Cu } \end{gathered}$	$\begin{gathered} \text { A3.75- } \\ \text { T1.66-Cu } \end{gathered}$	$\begin{gathered} \text { A3.75- } \\ \text { T2.6-Cu } \end{gathered}$	$\begin{aligned} & \text { A3.75-T2.6- } \\ & \text { Ch-4mm-Cu } \end{aligned}$	$\begin{gathered} \text { A5.65-T4.6- } \\ \text { Choke-Cu } \end{gathered}$	$\begin{gathered} \text { A5.65- } \\ \text { T4.6-PBG- } \\ \text { Cu } \end{gathered}$	$\begin{gathered} \text { A5.65- } \\ \text { T4.6-Cu } \end{gathered}$	T53VG3
Stored Energy [J]	0.153	0.189	0.189	0.294774	0.333	0.311	0.298	0.09
Q-value [x1000]	8.59	8.82	8.56	8.39	7.53	6.29	8.38	6.77
Shunt Impedance [MOhm/m]	102.891	85.189	82.598	52.03	41.34	36.46	51.359	91.772
Max. Mag. Field [A/m]	$2.90 \mathrm{E}+05$	$3.14 \mathrm{E}+05$	$3.25 \mathrm{E}+05$	$3.45 \mathrm{E}+05$	$4.20 \mathrm{E}+05$	$8.95 \mathrm{E}+5$	$4.18 \mathrm{E}+05$	$2.75 E+05$
Max. Electric Field [MV/m]	203.1	266	202.9	210.4	212	212	211.4	217.5
Losses in one cell [MW]	1.275	1.54	1.588	2.521	3.173	3.60	2.554	0.953
a [mm]	2.75	3.75	3.75	3.75	5.65	5.65	5.65	3.885
a/lambda	0.105	0.143	0.143	0.143	0.215	0.215	0.215	0.148
Hmax*ZO/Eacc	1.093	1.181	1.224	1.300	1.581	3.371	1.575	1.035
t [mm]	2	1.664	2.6	2.6	4.6	4.6	4.6	1.66
Iris ellipticity	1.385	0.998	1.692	1.692	1.478	1.478	1.478	1
Ph. advance/cell [deg.]	180	180	180	180	180	180	180	120

V.A. Dolgashev, 12 May 2009

