

PC Board Model Of A Five Channel Silicon Strip Detector With Charge Division Readout

Left side amplifier design is identical to the right side, but not shown

Preamp is a high GBP charge sensitive integrator.

Schematic of one of five channels.

- node points
 - Three stage integration, with the shaping time of each stage ≈⅓ total shaping time
 - AC coupled to preamp via differentiation with long shaping time to minimize undershoot

Benchmarking Simulation With The PC Board

PSpice Prediction

with Pspice prediction!!

0.23

Measurement Method	Noise [mV]	Noise [fC]						
Trace Merging	3.67	0.23						
Spectrum Analyzer	3.80	0.24						
Oscilloscope RMS	4.01	0.25						

 $R=600k\Omega$ C=12.7pF

Aver	aged N	loise Spectrum
	16	7.014
$\left(\frac{mV}{\sqrt{Hz}}\right)_i$	14	Time I
	12	
≥M <u>ï</u>	10	
$\sum_{i=1}^{\infty} \sum_{k=1}^{\infty} x_i ^{2k}$	8	
	6	
	2	
	0 10	² 10 ³ 10 ⁴ 10 ⁵ 10 ⁶ 10 ⁷ 10 ⁸ Frequency [Hz]
		riequelicy [nz]

Noise measurement agrees amazingly well

3.69

- We have confidence in the Pspice model.
- Pspice shows opamp noise contribution is less than 1% confirming that the noise is dominated by the RC network

Calculating Longitudinal Position Resolution

- Measured an anticorrelation in noise between the left and right sides of ρ=-0.61
- Anti-correlation is predicted qualitatively by Radeka for shaping times in the linear regime.

Calculating Longitudinal Position Resolution

$$P = \frac{Q_R}{Q_L + Q_R} = \frac{\alpha}{1 + \alpha} = \text{fractional position}$$

$$\alpha = \frac{Q_R}{Q_L}$$
Anti-correlation factors in here
$$\sigma_{\alpha} = (\alpha) \left\{ \left(\frac{\sigma_R}{Q_R} \right)^2 + \left(\frac{\sigma_L}{Q_L} \right)^2 - 2 \rho \left(\frac{\sigma_R}{Q_R} \right) \left(\frac{\sigma_L}{Q_L} \right) \right\}^{\frac{1}{2}}$$

$$\sigma_P = \left| \frac{dP}{d\alpha} \right| \sigma_\alpha = \left(\frac{1}{\left(1 + \alpha \right)^2} \right) \sigma_\alpha$$

- We measure σ_P to be
 ≈6.1mm for a 10cm, 600kΩ,
 12.7pF silicon strip detector
- Radeka predicts σ_P to be
 ≈6.5mm for a 10cm, 600kΩ,
 12.7pF silicon strip detector.
- Asymmetry in σ_p due to slight non-linearity in 2.5T shaping time choice as well as measurement uncertainty.

	Node 1	Node 2	Node 3	Node 4	Node 5	Node 6	Node 7	Node 8	Node 9
Q _R [fC]	0.32	0.64	0.95	1.28	1.60	1.95	2.33	2.77	3.23
Q _L [fC]	3.24	2.75	2.33	1.94	1.60	1.26	0.94	0.65	0.32
P	0.090	0.189	0.290	0.400	0.500	0.607	0.713	0.810	0.910
$\sigma_{R} = \sigma_{L} [fC]$	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24	0.24
σ_n	0.0598	0.0609	0.0615	0.0616	0.0617	0.0618	0.0617	0.0603	0.0600

ALCPG09

Final step: practical detectors are not isolated strips. Include two nearest-neighbors in simulation:

Network effects lead to ~5% reduction in longitudinal resolution.

Standard Form for Readout Noise (Spieler)

 F_i , F_v are signal shape parameters that can be determined from average scope traces.

Expected Noise vs. Ladder Length

Series noise expected to dominate for narrow (50 μ m) pitch sensors above ~25 cm long

Sensor "Snake": Read out up to 13 daisy-chained 5cm sensors (with LSTFE-1 ASIC)

Can read out from end, or from middle of chain ("center-tap")

Comparison of Results and Expectations

PSpice simulation is "first pass" (crude amplifier model; parasitic effects not yet incorporated, etc.)

Reconstructing Metastable Staus w/ SiD

Gauge-Mediated SUSY

- Large tract of parameters space as stau NLSP
- Metastable ($\gamma \beta c \tau_{stau}$ ~ centimeters) is in cosmologically preferred region

Process is

Reconstructing Metastable Staus w/ SiD

Start with:

5+1 layers for inside track

4 layers for outside track

→ Restricted range in r_{decay} for now; will expand soon

Measuring Staus with the SID

Stau sample:

11.1 fb⁻¹ of $e^+e^- \rightarrow$ stau pairs with

- $m_{stau} = 75 \text{ GeV}$
- $E_{cm} = 500$; $\sigma_{\tau\tau} = 90$ fb
- $\beta \gamma c \tau = 23 \text{ cm}$

Background sample:

5.3 fb⁻¹ combined SM background

Reconstructing Metastable Staus w/ SiD

Focus initially on $r_{decay} = 22-47$ cm...

Reconstruct decays by requiring:

- Outer hit of primary track on first tracker layer
- Inner hit of non-prompt track on second tracking layer
- Both tracks be on the same side of the Barrel (in z)
- The sign of the track curvatures match
- Non-prompt track curvature larger than the primary
- Tracks have a geometric intersection in the x-y plane

Stau Reconstruction Efficiency

Signal to Background for 10 fb⁻¹

Signal to Background (10 fb⁻¹)

Signal to Background (10 fb⁻¹)

Good separation between signal and background for #tracks/event and track p_t

Wrap-Up

Charge Division:

Longitudinal resolution of σ_z =6mm seems achievable for a 10cm-long sensor.

Long Ladder Readout Noise:

Simulation and data show significantly less readout noise for long ladders than expected. "Center-tapping" yields even further reductions.

Non-Prompt Tracks with SiD:

Reconstructing clean metastable stau signature between first and second tracking layer seems quite plausible. Beginning to look in different radial regions.

Benchmarking Simulation With The PC Board

Comparison of shaper output between simulation and measurement for $600k\Omega$, 12.7pF, 2.5T shaping time.

- Target rise time is 1.83µs (2.5T) from 1%→peak.
- Can see additional rise time added by diffusive line RC network which motivates the rise time method.
- Rise times differ by ≈ 5%.
- Peak charge values differ by ≈ 4%.
- e⁻¹ fall times differ by ≈2.5%.