# Detailed simulation of Silicon tracking system for Linear Collider

International Workshop on Linear Colliders 2010 (ECFA-CLIC-ILC Joint Meeting)

Frederic Kapusta presenting on behalf of Alexandre Charpy

& Konstantin Androsov

**LPNHE - Paris** 

# Silicon Tracking System SiLC Goal

### Goals of the SiLC (Silicon Tracking for Linear Collider) collaboration

- Optimisation studies of the geometry of the silicon trackers
- Access to different sensors and electronics technology
- Develop a tool to facilitate the optimisation studies
- Provide drivers for ILD concept and CLIC detectors

#### Main ideas

- Generate different kind of geometry very easily (number of silicon layers, false/true double-sided, technology ...) → dynamic aspect
- Possibility to introduce mis-alignment studies according a mechanical structure
- Materiel budget effects induce by the supports and the cabling
- Could be used in different framework

# Silicon Tracking System Code history

### **History**

- Developing a silicon tracker through ILCRoot framework (2008)
   First integration in the 4th concept
- Switch to Mokka framework (end of 2009) for a more detailed description of the ILD concept
- Re-design the design pattern in 2010 (more flexibility for CLIC study):
  - Integration in different framework
  - More flexibility = fewest fixed parameters
    - → creation of sub-detector families
    - → sub-detectors configuration
    - → cross setup

Availlable for ILD\_01 release

Different input

Actually in MOKKA trunk version

# Silicon Tracking System Code description

RootGeant and Geant 4 (ideas and plans)

- → build independent classes
- → can be extended
- → connect it to the geometry builder according the framework
- → possibilities to merge the concepts (example: use database and use Root Framework)



# Silicon Tracking System Design Pattern – UML class diagram







# Silicon Tracking System Interest of this complex structure

 Build the detectors from basic elements → LEGO game (pick up all the element requested by the user, checking the consistency and build the sub-detectors) = we add more flexibility



# Silicon Tracking System Geometry builder – hierarchy with ILD example

- All "family" are built into a common hierarchy (generic name)
  - the silicon module
  - the super-module (ex: quadrant for ETD, face in the barrel region)
  - the detection element (ex:1 section of barrel)(
  - build the layer (ex: one barrel, 4 quadrants))
  - build the sub-detectors (ex: n barrel, m end caps))
  - Supports/cables builder could be disconnected to the active
- area for material buget effect
  - Mis-alignment according the mechanical assembly

## Example of Application ILD Concept

# Silicon Tracking System ILD Silicon Module Detector

### Baseline

- $-100.12*100.12*200 \text{ mm}^2 \mu \text{m}$
- Strip technology
- 50μm pitch (~2048 channels), 12;5μm width
- Edgeless
- Chips on board: SiTr130-128+ controller + optical fibre
  - → A silicon module consists into n chained silicon sensors

### GEANT 4 description

- Module size: 1\*n sensors+50 μm gap
- The module segmentation and the sensors misalignment (rotation+shift) are included in the digitisation process
- Chip+controller included
- Support: graphite
   International Workshop on Linear Colliders 2010



# Silicon Tracking System ILD SIT/SET

### Geant 4 description:

- Using the edgeless properties
- false double sided strip detectors
- Gaps: 50 micron gap between modules, Super Module, Detection Element
- Support:

SET → partially defined/fixation according the concept dependance

SIT → waiting integration team





# Silicon Tracking System ILD ETD

### Geant 4 description:

- Using the edgeless properties
- XUV solution: pixels at small angle have to be implemented (XY alternative solution is available)
- Gaps: 50 micron gap between modules, super module, Gap between detection Element → dead zone



# Silicon Tracking System Overlapping

### Overlapping in the Silicon tracking components:

- checked through Root within 10 μm
- according the present status of the development
- → SIT, SET, ETD : ok

### Overlapping with other detectors:

- SET/TPC → under discussion with the TPC and MOKKA team (priority of the sub-detectors builder, re-scaling, "who depend of who", support structure
- SIT/FTD → fixed
- ETD/ECAL/TPC → under investigation (the place holder is not defined actually – see C.Clerc)

## Silicon Tracking System

### Easy customisation

Modification of the number of silicon barrels in the internal part of ILD



# Silicon Tracking System Not only ILD – CLIC studies

Full Silicon tracker: free to choose the shape and the sensor technologies for each layer:)





VXD+7couches silicium Alexandre.Charpy@lpnhe.in2p3.fr

# Silicon Tracking System Other Features

- Flexible parameters
  - Sensors and module sizes
  - Support type/activation
  - Module orientation (face to the beam, length along Z or orthogonal, module angle, shifting for coverage ....)
  - Sub-detector dimension and shape
  - Number of sub-detectors, of layers etc ...



Alexandre.Charpy@lpnhe.in2p3.fr

### Present status

#### What is done:

- The design pattern is frozen
- The module distribution is done → gap and basic support included

#### Tasks priority:

- complete the integration in Mokka and the ILD concept —> sub-detectors dependancy ...... in progress (depend of TPC)
- Hits management with derivated TRKSD00 class debugging progress
- write the GEAR part according the interface provide by A. Munich and depending the reconstruction request (S. Aplin)
  - "old" GEAR version: hope end of this week
  - new GEAR (into two weeks)
- complete support and cabling description of the SIT/SET
- Complete the cabling for the XUV and XY configuration
- write the documentation and examples (to compete the doxygen one) very important

### Present status

#### What is done:

- The design pattern is frozen
- The module distribution is done → gap and basic support included

#### Tasks priority:

- complete the integration in Mokka and the ILD concept —> sub-detectors dependancy ...... in progress (depend of TPC)
- · Hits manage New User are really Welcome ess
- write the GEAR part according the interface provide by A. Munich and depending the reconstruction request 8. April 19 Tee Cloack.
  - "old" GEAR version: hope end of this week
  - new GEAR (into two weeks)
- complete support and cabling description of the SIT/SET
- Complete the cabling for the XUV and XY configuration
- write the documentation and examples (to compete the doxygen one) very important

## Thanks for your attention ... And to the speaker ^^

## Detailed simulation of Silicon tracking system for Linear Collider

International Workshop on Linear Colliders 2010 (ECFA-CLIC-ILC Joint Meeting)

Frederic Kapusta presenting on behalf of
Alexandre Charpy
& Konstantin Androsov

**LPNHE - Paris** 

International Workshop on Linear Colliders 2010

Alexandre.Charpy@lpnhe.in2p3.fr

.

### Silicon Tracking System SiLC Goal

Goals of the SiLC (Silicon Tracking for Linear Collider) collaboration

- Optimisation studies of the geometry of the silicon trackers
- Access to different sensors and electronics technology
- Develop a tool to facilitate the optimisation studies
- Provide drivers for ILD concept and CLIC detectors

#### Main ideas

- Generate different kind of geometry very easily (number of silicon layers, false/true double-sided, technology ...) → dynamic aspect
- Possibility to introduce mis-alignment studies according a mechanical structure
- Materiel budget effects induce by the supports and the cabling
- Could be used in different framework

International Workshop on Linear Colliders 2010

Alexandre.Charpy@lpnhe.in2p3.fr

2

#### Mémo:

General SiLC goal => R&D for new technology of Silicon Tracking system

- R&D senseurs silicium
- R&D Front-End Electronic

#### **Physics Goals:**

- optimisation of the silicon tracker sub-detectors (momentum, tagging etc...)
- => need a tools to create easily new geometry configuration without writing long piece of code
- => completion fast/slow simulation easier
- => provide code and configuration for detector concept (ILD, ex4th, CLIC ...)

SiLC develop a code in this purpose with these main ideas .....

## Silicon Tracking System Code history

#### **History**

- Developing a silicon tracker through ILCRoot framework (2008)
   First integration in the 4th concept
- Switch to Mokka framework (end of 2009) for a more detailed description of the ILD concept
- Re-design the design pattern in 2010 (more flexibility for CLIC study):
  - · Integration in different framework
  - More flexibility = fewest fixed parameters
    - → creation of sub-detector families
    - → sub-detectors configuration
    - → cross setup

Availlable for ILD\_01 release

Different input

Actually in MOKKA trunk version

International Workshop on Linear Colliders 2010

Alexandre.Charpy@lpnhe.in2p3.fr

3

#### History of this task

- start in 2008 with ILCRoot (for 4<sup>th</sup> concept see if we can use this framework rapidly – it was true:)) (from AliRoot-> meaning natural transition to learn about linear collider)
- in 2009, drivers incomplete for ILD → decide to transfer the code into GEANT 4/ MOKKA – transition
- CliC consideration => give a more flexibility => meaning independence (as much as possible) to the framwork (G4, RootGeant), dynamics parameters – philosiphie: "forbid" the fixed parameters



## In this purpose: (vertical lecture)

- starting point MOKKA DB or XML
- drivers calls
- use "independent" class to create and check the consistency of the configuration
- call the geometry class for the geometry builder (horizontal lecture)
- Creation of family of sub-detectors accroding their surface and the physics region (barrel, forward, very forward etc ...)
- could add more family very easily → because template for the construction



UML diagram: flexibility and modularity mean code abstraction and more complicated to write one class for the geometry (ex ETD00, ETD01 .... now it is the same code for every version).

- red line: "family" → Barrel with SET/SIT for ILD concept
- each configration are store in a table of container =>
   each barrel, endcap etc or store inside →
   persitency of the configuration and Geant object
   and ease to get back all information (example:
   volume position, gear etc ...)
- in blue: structure of one family: example: single of double layer structure for one "barrel"
- in green: inheritance of one object (ex: G4barrelXX inherit of BarrelXX inherit of virtal class Barrel inherit of lassemble object



#### Why more flexibility:

- instead of to store one drivers for one sub-detectors configuration, we propose a knd of lego game or "cooking".
- from the DataBase we enter the ingredient we wish:
  - I want a full silicon tracker  $\rightarrow$  automatic generation
  - I want ans envelop of silicon composed of one 8-Pgon barrel, with one XUV encaps both equipped with active edge sensor with tab configuration (layer of silicon sensor – Kapton – electonics)
  - the drivers pick up all the class needed to build this configurarion

## Silicon Tracking System Geometry builder – hierarchy with ILD example

- All "family" are built into a common hierarchy (generic name)
  - · the silicon module
  - the super-module (ex: quadrant for ETD, face in the barrel region)
  - the detection element (ex:1 section of barrel)(
  - build the layer (ex: one barrel, 4 quadrants))
  - build the sub-detectors (ex: n barrel, m end caps))
- Supports/cables builder could be disconnected to the active area for material buget effect
- Mis-alignment according the mechanical assembly

International Workshop on Linear Colliders 2010

Alexandre.Charpy@lpnhe.in2p3.fr

1

### To offer this modularity we need a predefined structure:

- $\rightarrow$  here are enumerate of a subdetectors is build  $\rightarrow$  5 steps
- $\rightarrow$  the independancy of the support, cabling etc ...

There is example according the ILD concept...



Now application for ILD concept



- Module size: 1\*n sensors+50 μm gap
- The module segmentation and the sensors misalignment (rotation+shift) are included in the digitisation process
- Chip+controller included
- Support: graphite International Workshop on Linear Colliders 2010

Alexandre.Charpy@lpnhe.in2p3.fr

9

## Silicon Tracking System ILD SIT/SET

#### • Geant 4 description:





## Silicon Tracking System ILD ETD

#### • Geant 4 description:

- · Using the edgeless properties
- XUV solution: pixels at small angle have to be implemented (XY alternative solution is available)



## Silicon Tracking System Overlapping

#### Overlapping in the Silicon tracking components:

- checked through Root within 10 μm
- · according the present status of the development
- → SIT, SET, ETD : ok

#### Overlapping with other detectors:

- SET/TPC → under discussion with the TPC and MOKKA team (priority of the sub-detectors builder, re-scaling, "who depend of who", support structure
- SIT/FTD → fixed
- ETD/ECAL/TPC → under investigation (the place holder is not defined actually – see C.Clerc)

International Workshop on Linear Colliders 2010

Alexandre. Charpy@lpnhe.in2p3.fr

12



### Silicon Tracking System Not only ILD – CLIC studies



## Silicon Tracking System Other Features

- Flexible parameters
  - · Sensors and module sizes
  - Support type/activation
  - Module orientation (face to the beam, length along Z or orthogonal, module angle, shifting for coverage ....)
  - Sub-detector dimension and shape
  - Number of sub-detectors, of layers etc ...



International Workshop on Linear Colliders 2010

Alexandre.Charpy@lpnhe.in2p3.fr

13

#### Present status

#### What is done:

- The design pattern is frozen
- The module distribution is done → gap and basic support included

#### Tasks priority:

- complete the integration in Mokka and the ILD concept -> sub-detectors dependancy ...... in progress (depend of TPC)
- Hits management with derivated TRKSD00 class debugging progress
- write the GEAR part according the interface provide by A. Munich and depending the reconstruction request (S. Aplin)
  - "old" GEAR version: hope end of this week
  - new GEAR (into two weeks)
- · complete support and cabling description of the SIT/SET
- Complete the cabling for the XUV and XY configuration
- write the documentation and examples (to compete the doxygen one) very important

International Workshop on Linear Colliders 2010

Alexandre. Charpy@lpnhe.in 2p3.fr

16



