Planned Breakdown Test of SW Accelerator Cavity with Shaped Iris

J.M Neilson, V. Dolgashev and S. Tantawi

SLAC National Accelerator Laboratory

IWLC 2010

Geneva

Outline

- Previous breakdown results for elliptical and rounded iris
- Calculations for shaped iris geometry

Two Single-Cell-SW Structures with same magnetic but different electric fields

Parameter Values for Simple Iris (Field Normalized for 100MeV/m Gradient)

Parameter	T=1.66 Round Iris	T=2.6mm Elliptical Iris
Stored Energy [J]	0.189	0.189
Q-value	8820	8560
Shunt Impedance [MOhm/m]	85.2	82.6
Max. Mag. Field [KA/m]	314	325
Max. Electric Field [MV/m]	266	203
Losses in one cell [MW]	1.54	1.59
Hmax*Z0/Eacc	1.18	1.22
Max. Im{E x H*} $W/\mu m^2$	42.8	44.4
Max. Im{E x H*}/H ²	417	407

Breakdown Dependence

1C-SW-A3.75-T2.6-Cu 10 MW input

Maximum magnetic field 672 kA/m

Maximum magnetic field 390 MV/m

Resonance at 11.4212 GHz $\beta = 0.988$

V.A. Dolgashev, 25 September 2007

1C-SW-A3.75-T2.2-Cu 10 MW input

Resonance at 11.424 GHz $\beta = 1.007$

Shaped Iris

 Iris profile designed to maximize shunt impedance, minimize peak surface magnetic field

SW Cells a/ λ =0.143, π Phase Shift Field Normalized for 100MeV/m Acceleration

Parameter	T=1.66 Round Iris	T=2.6mm Elliptical Iris	T=2.2mm Shaped Iris
Stored Energy [J]	0.189	0.189	0.186
Q-value	8820	8560	10090
Shunt Impedance [MOhm/m]	85.2	82.6	99.2
Max. Mag. Field [KA/m]	314	325	294
Max. Electric Field [MV/m]	266	203	268
Losses in one cell [MW]	1.54	1.59	1.32
Hmax*Z0/Eacc	1.18	1.22	1.11
Max. Im{E x H*} W/ μ m ²	42.8	44.4	56.5
Max. $Im{E x H^*}/H^2$	417	407	650

Summary

- New structure designed with lower magnetic field
- However local Poynting vector significantly increased compared to other structure

