IR Transparent Si microstrips (alignment optimized Si sensors)

IFCA SiLC (a.o.): Marcos Fernández, Javier González, Richard Jaramillo, Amparo López, David Moya, Celso Martínez Rivero, Francisca Munoz, Alberto Ruiz, Iván Vila

CNM SiLC (a.o.): Daniela Bassignana, Manuel Lozano, Giullio Pellegrini, Enric Cabruja, David Quirion

IWLC2010-Geneve 19th October 2010

Outline

- What is an infrared hardware alignment system
- How to increase transmittance of a microstrip detector
- Simulation of prototype transparent microstrips
- Measurements of prototypes
- Conclusions and outlook

Microstrips as semitransparent light detectors

• Laser tracks can be used by a hardware system to align the tracker

- First implemented by AMS I, then AMS II and CMS
- Goal of this project is to improve transmittance to infrared light of microstrip detectors.
 Main constraint are:
 - Do not alter the standard production process
 - Do not include alien materials

How to increase %T of a strip detector

- Aluminum strips act like mirrors. If strips are too wide, reflectance will increase too much
 - Optimize pitch to strip width ratio
 - Use transparent electrodes?

- IR light penetrates 300 μm Si. Multiple reflections at the interfaces \Rightarrow Interferences
 - Choose thickness of the materials such that light interferes constructively
 - Complications come from strips \Leftrightarrow diffraction grating (pitch~50 µm, λ ~1 µm)

- We need to develop a simulation to calculate:
 - Transmittance (%T), Reflectance (%R) and Absorptance (%A) for a µstrip detector
 - Optimize the design (pitch, strip width, thickness of layers)
 - Define prototypes

Simplified simulation of µstrips as plane-parallel layers

InterferenceDiffraction

InterferenceDiffraction

Planeparallel layers simulation

- Ideal layout: no strips \Rightarrow no diffraction \Rightarrow all energy goes forward
 - Useful to estimate maximum performance (T_{max} ~75-80%)
- Useful to characterize refraction index of materials and deposition tolerance (backengineering)

TRm_ts1w1_04March10_1_1000-1155_2010/04/09_16.22

TRm_ts1w1_04March10_1_1000-1155_210/04/09 16.22

Including diffractional effects

- Diffraction here means that:
 - Energy spreads in secondary maxima
 - Light spreads off the central beam
 - Experimentally T=T(distance to detector)

Incidence plane

Main conclusions from full simulation

See for instance: Eudet-Memo-2009-23

— Strips (having metal or not) behave as a diffraction grating. Sensors with intermediate strips are more "efficient" gratings \Rightarrow worse as %T devices

- Pitch reduction (=closer strips):
 - \rightarrow decreases transmittance (1st order effect)
 - \rightarrow increases reflectance (2nd order).
- Strip width increase:
 - \rightarrow increases reflectance (1st order)
 - \rightarrow reduces transmittance (2nd order).

Top and bottom passivation layers^(*) behave as an AntiReflection Coating (ARC)
 Top passivation thickness more critical than bottom.

(*) Passivation=
$$Si_3N_4$$
 on SiO_2

Validation of full simulation (interference + diffraction)

- Validation of simulation not possible with already existing sensors from Hamamatsu
 - No information available on layers and thicknesses

- Therefore we need to validate the simulation with the same sensors we want to optimize
 - Flexibility of CNM allows to hold processing after first layer of passivation

– Observed simulation \neq measurement \Rightarrow Tune simulation

Marcos Fernandez - IFCA - IWLC2010 10

Last steps before the end of the run

• Now, for the last 3 wafers:

– Iterative process: deposit $Si_{_3}N_{_4}$ → measure %T → fit → correct if needed

Current situation (18th October 2010)

Wafer 3, measured

AI	SiO ₂	
D +		
Si		
n+		

Current situation (measured yesterday at CNM)

Complete bottom passivation Transmittance~45%

For comparison:

CMS=20% with pitch > 80 μ m AMS=50% with pitch 110 μ m

Bottom Si₃N₄ Top Si₃N₄

50 Q₁ 0.16 45 d 400 0.14 350 0.12 300 **b**.1 250 0.08 200 150 .05 100<mark>5.</mark> 100 200 300 400 500

Wafer 3: Sequential deposition of Si3N4 (using measured thickness)

T=T(top Si₃N₄ thickness , bottom Si₃N₄ thickness) for the 12 sensors

0.14

0.12

.05

.05

h s

0.45

0.35

b.3

5 00 (

4:50

400

3 50

300

Best top and bottom thickness (wafers 3-5)

- Thickness of bottom Si3N4 passivation layer does not depend on intermediate strip

- Upper Si3N4 layer is thicker for sensors without intermediate strip

Conclusions

- Densely populated microstrip silicon sensors can be made >50% transparent
- Transmittance depends more on pitch and less on strip width
 - \rightarrow Sensors with intermediate microstrips have lower %T
- Reflectance depends more on strip width
- Overall transmittance defined by the thickness of upper passivation $Si_{3}N_{4}$ layer

 \rightarrow Aiming for 55%

- We have very good transmittance for a very busy structure
- Upper Si₃N₄ layer is thicker for sensors without intermediate strip
- Run will be finalized in October.

Outlook

Apply lessons learnt in a new run of highly transparent sensors

 \rightarrow Aiming for >60%

BACKUPS

(x,y) of first maximum vs sensor id in wafers 3, 4, 5

X= top $Si_{3}N_{4}$ thickness Y= bottom $Si_{3}N_{4}$ thickness

