FAST BEAM-ION INSTABILITIES

Vacuum Specifications in CLIC Main Linac

Adrian Oeftiger

Supervisor: G. Rumolo

CERN, BE/ABP-CC3

September 15, 2010

(日) (四) (코) (코) (코) (코)

5 Perspectives

My tasks

Fast beam-ion instability I

Fast beam-ion instability:

- electron bunches create ions out of residual gases by
 - scattering ionization
 - field ionization after threshold (beam transversely small enough): currently \sim 4km for a final energy of 1.5TeV

• electromagnetic interaction between electrons and ions

- ions created bunch by bunch and kicked by passing bunches
- electron bunches feel effect of ion field
- resulting in 1. extra phase advance shift over bunch train
 - possible excitation of unstable ion-electron coupled motion (ions do not necessarily need to be trapped)

My tasks

Fast beam-ion instability II

- two-stream instability:
 - accumulation of ions around beam for long enough times
 ⇒ coupled oscillations between electrons and ions triggered (resonance, grows by its own)

 $source: \ http://sps-impedance.web.cern.ch/sps-impedance/USPAS/TwoStream.pdf$

- 同 ト - ヨ ト - - ヨ ト

My tasks

FASTION code I

• FASTION code uses PLACET Twiss file to get beta functions and energies (tracking electrons through Main Linac)

 β -functions increase along Main Linac \Rightarrow partial compensation of shrinking beam size due to acceleration

• interactions of ion and electron macro-particles at each lattice point (integrated up to next point)

My tasks

Energy vs. Interaction Points

 distribution of interaction points in PLACET Twiss file becomes less dense towards end

My tasks

FASTION code II

FASTION code produces several output files, e.g.

 bunch by bunch offsets x, x', y, y' over whole train for all lattice points

Figure: Bunch offsets - ion species: H₂O, pressure: 20nTorr

My tasks

FASTION code II

FASTION code produces several output files, e.g.

 bunch by bunch offsets x, x', y, y' over whole train for all lattice points

My tasks

FASTION code II

FASTION code produces several output files, e.g.

- bunch by bunch offsets x, x', y, y' over whole train for all lattice points
- sample ion trajectories recorded uniformly distributed

Figure: Ion trajectories - ion species: H₂O, pressure: 20nTorr

My tasks

FASTION code II

FASTION code produces several output files, e.g.

- bunch by bunch offsets x, x', y, y' over whole train for all lattice points
- sample ion trajectories recorded uniformly distributed

Figure: Ion trajectories - ion species: H₂O, pressure: 20nTorr

My tasks

Specifications

Parameters used in the study of CLIC Main Linac:

Energy	<i>p</i> ₀ [GeV]	9 to 1500
Norm. transv. emitt.	$\epsilon_{x,y}$ [nm]	660, 10
Bunch population	N	$4 imes 10^9$
Number of bunches	N_b	312
Bunch spacing	ΔT_b [ns]	0.5
Bunch length	σ_{z} [ps]	0.15
Linac length	<i>L</i> [km]	20.5
Gas pressure	P [nTorr]	scanned
loniz. cross sect.	σ_{ions} [MBarn]	2
Thresh. electr. field	E_{th} [GV/m]	15

My tasks

Beam Transverse Size Shrinking

What makes Main Linac special? (compared to transfer line)

- field ionization can start (small transverse beam size)
- trapping condition changing along Main Linac
- excited frequencies different along Main Linac

My tasks

My tasks

What I finished so far:

- $\bullet\,$ scan of different ion species from 2 (H_2) to 132 (Xe) for
 - starting mass number causing beam instabilities
 - frequency analyses of unstable train oscillations
- investigation on realistic distributions of residual gas
 - main components of the residual gas one by one
 - threshold pressure causing beam instabilities

My tasks

My tasks

What I finished so far:

- $\bullet\,$ scan of different ion species from 2 (H_2) to 132 (Xe) for
 - starting mass number causing beam instabilities
 - frequency analyses of unstable train oscillations
- investigation on realistic distributions of residual gas
 - main components of the residual gas one by one
 - threshold pressure causing beam instabilities

What I would like to accomplish:

- simulating all ion species of realistic distribution together
- evaluation of pressure threshold for energy scaled Linac
- study the 500 GeV option
- perform some parameter scans

Trapping Condition for Gaussian Beams

Ion species being trapped in x-/y-plane:

$$A > \frac{N_b r_p T_b c}{2 \sigma_{x,y} (\sigma_x + \sigma_y)}$$

with r_p : classical proton radius

 ions have to be trapped in both planes (⇒ can only occur at beginning of Linac)

Approach for Scan

- scanned mass numbers: 2 (H₂), 4 (He), 5, 6, 7, 10, 12, 14, 16, 18 (H₂O), 20 (Ne), 28 (CO), 32 (O₂), 44 (CO₂), 70 (³⁵Cl₂), 84 (Kr), 132 (Xe)
- pressure set to 20nTorr
- analyzing bunch train motion and its fourier transformed modes

Why scan?

• evaluation of frequency dependencies on ion mass number

• • = • • = •

Fourier Transformed Modes for A = 18 (H₂O)

- ● ● ●

Fourier Transformed Modes for A = 18 (H₂O)

Fourier Transformed Modes for A = 18 (H₂O)

< 17 ▶

-∢ ≣ →

Fourier Transformed Modes for A = 84 (Kr)

- ● ● ●

Fourier Transformed Modes for A = 84 (Kr)

Fourier Transformed Modes for A = 84 (Kr)

< 一型

э

Mode Amplification for $A = \overline{18}$ (H₂O)

Mode Amplification for $A = \overline{18}$ (H₂O)

Mode Amplification for A = 18 (H₂O)

Adrian Oeftiger

Supervisor: G. Rumolo

Mode Amplification for A = 84 (Kr)

Mode Amplification for A = 84 (Kr)

A > 4

Mode Amplification for A = 84 (Kr)

Adrian Oeftiger

Supervisor: G. Rumolo

Results

- upcoming unstable resonance frequencies at A = 5, clear beam instability from A = 7 on (20nTorr)
- frequency peaks from the scanned ion species (cf. ion frequency)

Adrian Oeftiger

Supervisor: G. Rumolo

Results

- upcoming unstable resonance frequencies at A = 5, clear beam instability from A = 7 on (20nTorr)
- frequency peaks from the scanned ion species (cf. ion frequency)
- frequency mean values and standard deviation

Adrian Oeftiger

Supervisor: G. Rumolo

Results for H₂O Results for CO Results for CO₂

Composition of Vacuum

Three different possibilities for vacuum composition:

	Unbaked Vacuum	Baked Vacuum	BakedNEG Vacuum
H ₂	40%	80%	90%
H_2O	40%	10%	4%
CO	10%	5%	3%
CO ₂	10%	5%	3%

Thanks to S. Calatroni for providing the compositions

- 同 ト - ヨ ト - - ヨ ト

-

Results for H_2O Results for CO Results for CO₂

Results

• H₂ stable at least until 200nTorr, 2000nTorr is unstable (negligibly high)

Evolution of peak frequency amplitude for H_2O :

• beam instabilities in both x- and y-plane occur from 4nTorr on

Results for H_2O Results for CO Results for CO₂

Results

Evolution of peak frequency amplitude for CO:

 beam instabilities in both x- and y-plane occur from 3nTorr on

-

Results for H_2O Results for CO Results for CO₂

Results

Evolution of peak frequency amplitude for CO₂:

 beam instabilities occur from 2nTorr (x-plane) resp. from 3nTorr (y-plane) on

-

- for considerable pressures, beam instabilities occur from $A \ge 5$ on
- ion frequencies range between 0.1 and 0.5 GHz in x- and y-plane
- H_2O becomes unstable from 4nTorr on
- CO becomes unstable from 3nTorr on
- CO₂ becomes unstable from 2nTorr (x-plane) and 3nTorr (y-plane) on

伺 ト イ ヨ ト イ ヨ ト

Perspectives

- for combinations of gas species, thresholds could be more relaxed under constant total pressure
- simulations with several ion species (real gas compositions) can be tricky:
 - e.g. for too many H_2 macro-particles, we do not see instabilities at expected pressures compared to simulations without H_2 (due to a numerical problem)
- however, H_2 has no effect on beam \Rightarrow leave it aside (fix total pressure and consider only rest parts of realistic gas composition)

• • = • • = •