

Reminder

- → Main linac design is well advanced.
- Beam-based alignment, dynamic imperfections, fast ion instability and multi-bunch effects have been studied and presented at PAC09 and the last ACE Meeting.
- Emittance dilution by component misalignment can be kept at acceptable levels utilizing beam-based alignment. Requirements on alignment accuracy (5-10 μm, 100 μrad) and BPM resolution (0.1 μm) are reasonable.
- Quadrupoles need to be stabilized to nanometer and 100 nanoradians level. Requirements on RF structures are at micrometer and microradians level. RF phase and amplitude requirements are relaxed to a few 0.1 deg and a few 0.1% by an increased bandwidth of the BDS.
- Simulation of field ionization has been improved by implementing better model into the code. New vacuum specifications are being worked on.

F. Stulle, ACE February 2010

D. Schulte

- Emittance preservation target and lattice design
- Static imperfections

modelling, beam-based alignment, tolerances

• Dynamic imperfections

modelling, beam-based alignment, tolerances

CLIC ACE May 2009

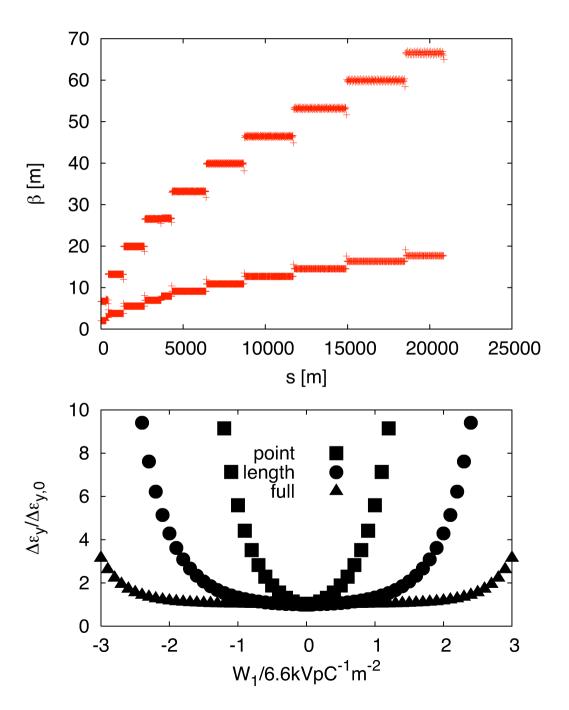
- Main linac is a most important source of emittance growth, is closely linked to the technology and imperfections have been studied in some detail
 - it is anticipated that we will not allow for tighter specifications elsewhere
 - but remains to be confirmed
- Static imperfections

errors of reference line, elements to reference line, elements...

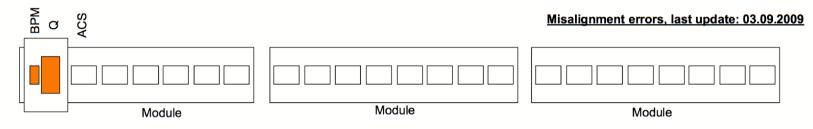
pre-alignment, lattice design, beam-based alignment, beam-based tuning

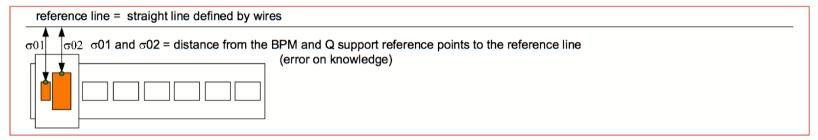
• Dynamic imperfections

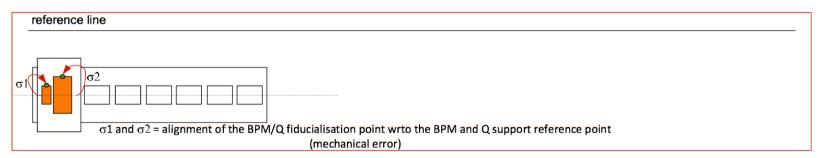
element jitter, RF jitter, ground motion, beam jitter, electronic noise,...

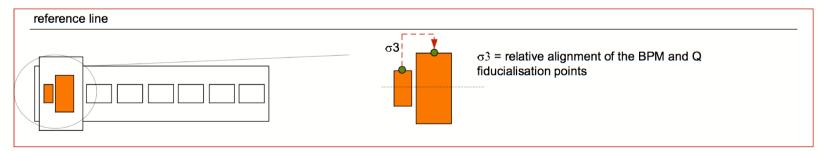

lattice design, BNS damping, component stabilisation, feedback, re-tuning, realignment

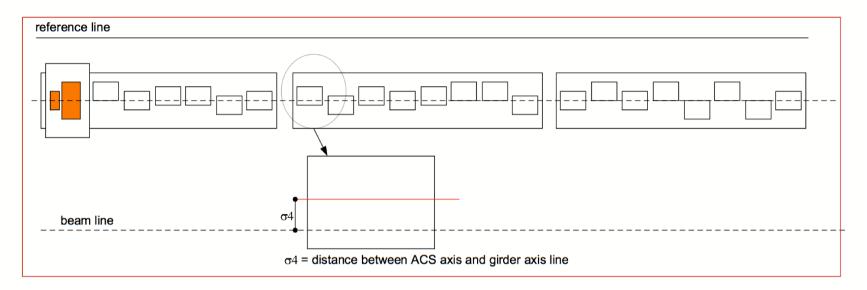
- Vertical main linac emittance budget
 - $\Delta \epsilon_y \leq 5 \,\mathrm{nm}$ for dynamic imperfections
 - $\Delta \epsilon_y \leq 5 \, \mathrm{nm}$ for static imperfections (90% probability)
 - horizontal budget 6 times larger (\rightarrow tolerances 2.5 times larger)

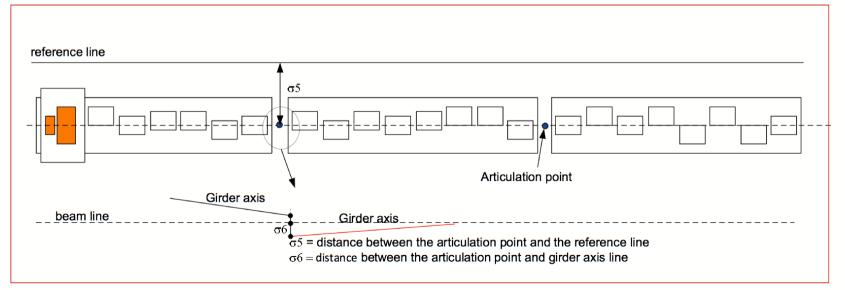


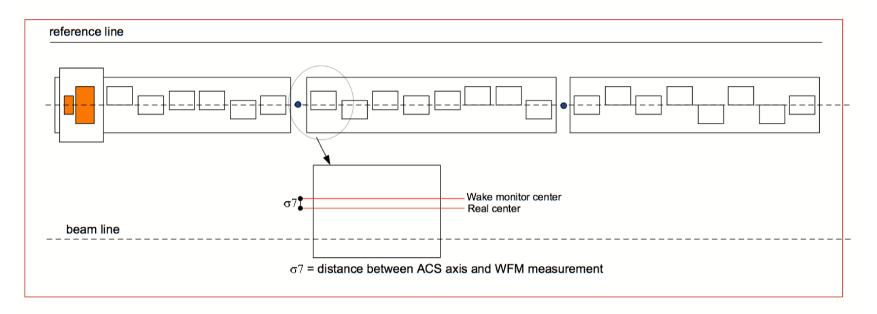

- Used $\beta \propto \sqrt{E}$, $\Delta \Phi = \mathrm{const}$
 - balances wakes and dispersion
 - roughly constant fill factor
- \bullet Total length about 21 $\rm km$
 - fill factor about 78.6%
- 12 different sectors used
- Matching between sectors using 7 quadrupoles to allow for some energy bandwidth
- Single bunch stability ensured by BNS damping
- Multi-bunch coherent offset leads to phase shift of 90° at linac end
- Bunch-to-bunch offset amplification shown



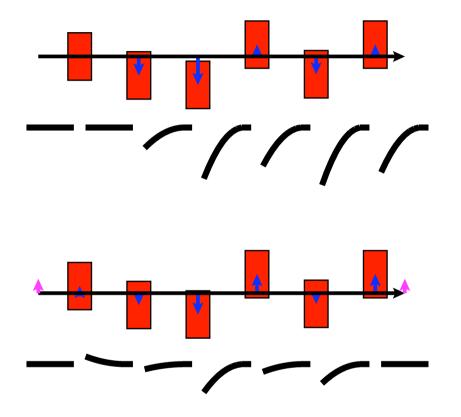






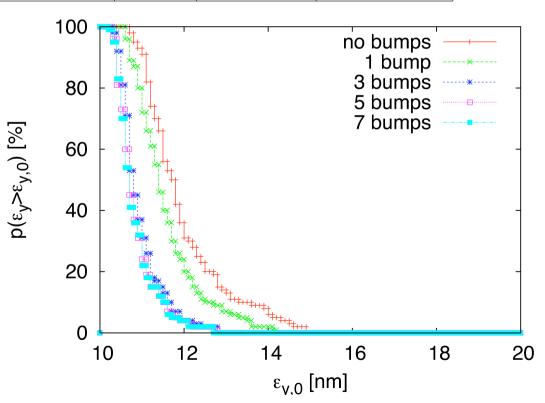


imperfection	with respect to	symbol	target value
BPM offset	wire reference	σ_{BPM}	$14\mu{ m m}$
BPM resolution		σ_{res}	0.1 μm
accelerating structure offset	girder axis	σ_4	$10\mu{ m m}$
accelerating structure tilt	girder axis	σ_t	200 μ radian
articulation point offset	wire reference	σ_5	$12\mu\mathrm{m}$
girder end point	articulation point	σ_6	5 μm
wake monitor	structure centre	σ_7	5 μm
quadrupole roll	longitudinal axis	σ_r	100 μ radian



- Make beam pass linac
 - one-to-one correction
- Remove dispersion, align BPMs and quadrupoles
 - dispersion free steering
 - ballistic alignment
 - kick minimisation
- Remove wakefield effects
 - accelerating structure alignment
 - emittance tuning bumps
- Tune luminosity
 - tuning knobs

- Each structure is equipped with a wake-field monitor (RMS position error $5\,\mu{\rm m}$)
- Up to eight structures on one movable girders
- \Rightarrow Align structures to the beam
- Assume identical wake fields
 - the mean structure to wakefield monitor offset is most important
 - in upper figure monitors are perfect, mean offset structure to beam is zero after alignment
 - scatter around mean does not matter a lot
- With scattered monitors
 - final mean offset is σ_{wm}/\sqrt{n}
- In the current simulation each structure is moved independently
- A study has been performed to move the articulation points


- For our tolerance $\sigma_{wm} = 5 \,\mu m$ we find $\Delta \epsilon_y \approx 0.5 \,nm$
 - some dependence on alignment method

imperfection	with respect to	symbol	value	emitt. growth
BPM offset	wire reference	σ_{BPM}	$14\mu{ m m}$	$0.367\mathrm{nm}$
BPM resolution		σ_{res}	0.1 $\mu \mathrm{m}$	$0.04\mathrm{nm}$
accelerating structure offset	girder axis	σ_4	10 $\mu{ m m}$	$0.03\mathrm{nm}$
accelerating structure tilt	girder axis	σ_t	200 μ radian	$0.38\mathrm{nm}$
articulation point offset	wire reference	σ_5	12 $ m \mu m$	$0.1\mathrm{nm}$
girder end point	articulation point	σ_6	$5\mu{ m m}$	$0.02\mathrm{nm}$
wake monitor	structure centre	σ_7	$5\mu{ m m}$	$0.54\mathrm{nm}$
quadrupole roll	longitudinal axis	σ_r	100 μ radian	$\approx 0.12\mathrm{nm}$

- Selected a good DFS implementation
 - trade-offs are possible
- Multi-bunch wakefield misalignments of $10 \,\mu m$ lead to $\Delta \epsilon_y \approx 0.13 \, nm$
- Performance of local prealignment is acceptable

- Important is the multi-pulse emittance
- Counteract dynamic effects by
 - fast component stabilisation (between pulses)
 - beam-based orbit feedback
 - longitudinal feedback
 - slow component stabilisation (e.g. temperature drifts)
 - beam tuning
 - beam-based alignment when needed
 - repetition of pre-alignment
- Do not have a model of the imperfections
 - some models for ground motion
 - technical noise is not yet available
 - transfer by girder is not yet available (some model of the magnet exists)
 - impact of stabilisation feedback is not yet available
 - \Rightarrow so we derive some specifications

- Luminosity loss is part of the emittance budget
- But limit luminosity fluctuation to less than 10%
 - total luminosity fluctuation is not straightforwad

Source	budget	tolerance
Damping ring extraction jitter	0.5%	kick reproducibility $0.1\sigma_x$
Transfer line stray fields	?%	data needed
Bunch compressor jitter	1%	
Quadrupole jitter in main linac	1%	$\sigma_{jitter} \approx 1.8 \mathrm{nm}$
RF amplitude jitter in main linac	1%	0.075% coherent, 0.22% incoherent
RF phase jitter in main linac	1%	0.2° coherent, 0.8° incoherent
RF break down in main linac	1%	$rate < 3 \cdot 10^{-7} m^{-1} pulse^{-1}$
Structure pos. jitter in main linac	0.1%	$\sigma_{jitter} \approx 880 \mathrm{nm}$
Structure angle jitter in main linac	0.1%	$\sigma_{jitter} \approx 440 \mathrm{nradian}$
Crab cavity phase jitter	2%	$\sigma_{\phi} \approx 0.017^{\circ}$
Final doublet quadrupole jitter	2%	$\sigma_{jitter} \approx 0.17(0.34) \mathrm{nm} - 0.85(1.7) \mathrm{nm}$
Other quadrupole jitter in BDS	1%	
	?%	

 \Rightarrow Long list of small sources adds up

 \Rightarrow Impact of feedback system is important

- \bullet Typical local alignment tolerances are of the order of $10\,\mu m$
 - in particular BPM position and wake monitors
- The first results of wire reference system look very promising
 - more complete studies to follow
- Dynamic tolerances have been studied
 - but need a better model
 - produced some simple specifications sofar
- Feedback conceptual design is an important ingredient
 - main linac baseline feedback layout exists
 - BDS will follow soon
- Controler design
 - optimisation depends on noise model and feedback layout
 - knowledge of the system response is vital and is being studied
- Some resources are available for the beam dynamics work (J. Resta Lopez at JAI, J. Pfingstner (PhD student), J. Snuverink (fellow), fraction of DS)