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Start-to-end Simulations

S-to-E: usually simulation from Damping Rings to Interaction Point (but it might

include sources)

RTML ~14km

- Damping Ring Extraction ~200m

- Escalator / Doglegs / Diagnostics ~1km

- Return Line following the Earth curvature ~12km

— Turnaround ~300m

- Spin Rotator ~125m

- Bunch Compressor(s) ~350m
Main Linac ~11km

EMIT2
(27m)

Beam Delivery System ~2.5km
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Start-to-end Simulations

More realistic beam phase-space all along the machine
More realistic Static / Dynamic Misalignments
Advanced Static Correction Schemes

 Example: BC used for DFS in the ML
Dynamic: Cascade Feedback Loops

Interaction Region and Luminosity calculation (GUINEAPIG)

Encouraged the use of different codes (PARMELA/PLACET-
MERLIN-LUCRETIA/GUINEAPIG)



RTML: DRX + Doglegs + Return Line
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e Correction: 1-TO-1 4 Kick Minimization + Dispersion Bumps + Coupling Correction

307
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e Emittance growth along the line for 1000 seeds:
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XY Misalign + Strength + Roll ——
XY Misalign + Strength
5 X/Y Misalign —— .

Ag, [nm]
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= X/Y Offsets: Final average emittance growth is 0.48 nm (0.52 nm 90% c.l.)
= Add Quad/Sbend Strength: Final average emittance growth is 0.68 nm (1.25 nm 90% c.l.)
= Add Quad/Sbend Roll: Final average emittance growth is 1.87 nm (3.23 nm 90% c.|.)



RTML: Turnaround + Spin Rotator

Damping Ring

LLLLL

e Correction: 1-TO-1 + Kick Minimization + Dispersion Bumps A :j /f — // | o
e Emittance growth along the line for 1000 seeds: R X \
100 T
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XY Misalign + Stren
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= X/Y Offsets: Final average emittance growth is 2.26 nm (5.33 nm 90% c.l.)
= Add Quad/Sbend Strength: Final average emittance growth is 3.69 nm (8.12 nm 90% c.|.)
= Add Quad/Sbend Roll: Final average emittance growth is 6.11 nm (12.73 nm 90% c.l.)



Damping Ring

LLLLL
400t

" G 7 Turnaround 550 it sacty
Entire RTML “Front End”™ = ™.

e Correction: 1-TO-1 4+ Kick Minimization 4+ Dispersion Bumps + Coupling Correction
e Emittance growth along the line for 1000 seeds:
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= X/Y Offsets: Final average emittance growth is 1.06 nm (1.58 nm 90% c.l.)
= Add Quad/Sbend Strength: Final average emittance growth is 2.01 nm (3.51 nm 90% c.l.)
= Add Quad/Sbend Roll: Final average emittance growth is 5.36 nm (9.94 nm 90% c.l.)



Bunch Compressor (ILC-RDR)
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e Case B. Emittance Growth along the beamline, for 100 machines, a compressas eI collmation
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— Final vertical emittance growth is | Ae = 1.8 nm




Bunch Compressor (ILC-SBZOOQ)W

Misalignments+Couplers
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pre-accelerator

P source

BC1S + ML e

"/ damping Kev extraction
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=Ly
e Vertical emittance along BC15+ML in case of misalignments
e Couplers kicks are not considered, wakefields are not considered
BC15+ML: All misalign, ﬂ.q::E-D, 1.05, 0.8, BPMgs=1um, 1 mack
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= final emittance is 31.5 nm
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Tuning Knobs in ILC main linac

m Very good results can be obtained using AE = 0.1 and Ag ~ 0.01
(energy difference at undulator stays just below 2%).

m Dispersion Free Steering removes almost all dispersion and there is
nothing to be gained by using dispersion bumps. Wakefield bumps
on the other hand strongly enhance the emittance.
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Main Linac

J. Resta-Lopez
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Normalised emittance at the exit of the main linac, after applying survey
alignment errors and beam-based alignment correction. Results from simulation

of 100 machines.
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Main Linac

D. Kruecker, PAC 2007
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Figure 3: Projected vertical emittance along the electron
main linac. ATL ground motion (A = 4 - 10~® m/s) with
one-to-one steering. Each point shows the average over
100 random configuration i.e. ground motion seeds. The
green line is the emittance after about 1 year. The undulator
bypass is clearly visible as a step at 6890 m.
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Figure 4: Relative luminosity over time. ATL ground mo-

tion (A = 4 - 10~'% m/s) with one-to-one steering. Each
point shows the average over 80 random configurations i.e.

ground motion seeds corresponding to 40 colliding

bunch

pairs. The error bars show the RMS over these random

configurations.
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Main Linac

N. Solyak, PACO7

Adaptive Alignment:

AE
ﬁ.':i-'i = Cconv = [Ai+1 T ;ij_]_ — Ai = {1 T E.]l.{l — E:l}]

Ground motion and adaptive alignment:
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Figure 3. (a) Normalized vertical emittance vs. time in a
perfectly aligned linac. AA of 100 iterations and 0.3
convergence factor 1s implemented after every one hour
of GM model ‘C’. (b) A blown-up portion of the plot after

adaptive alignment.



ILC Luminosity Result with IP-FB;%-

Different scenarios of ground motion
G. White, J. Resta-Lopez
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* Example for 1 single random seed of GM (0.2 s of GM applied to both main linac

and BDS)

* Considering 40 % emittance growth in the main linac

For the noisiest site
(model C), applying fast
position and angle FB
stabilization, a recovery
of 85 % of the nominal
value is obtained

For quiet sites (model A
and B) practically the
100 % of the nominal
luminosity would be
achievable.
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Conclusions and Future Steps

We aren't far from complete start-to-end simulations

Integration of the entire RTML “Front End” exists

Bunch Compressor + Main Linac exists

Main Linac + Beam Delivery + IP exists (collaboration with
JAI-Oxford on intra-pulse |IP-FB)

Need to put together RTML+ML+BDS
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