

CLIC Magnetic Stray Field Studies

Jochem Snuverink 10/19/10

Outline

- Based on IPAC10 paper¹
- Stray Fields
- Simulations
- Sensitivities / Problem Areas
- Magnetic shielding
- Mitigation techniques

CLIC

Magnetic stray fields

- Natural (earth, ore deposit)
- Technical field
 - RF cavities / klystrons
 - power lines / sources
 - vacuum pumps
 - trains
 - etc.
- Worry about dynamic fields

Frequencies

- High frequencies (> kHz) shielded by structures and beam pipe (skin depth ~ 1/√f)
- Low frequencies (< Hz) reduced by feedbacks
- Harmonics of 50 Hz not seen by the beam

Earth magnetic field

Drive Beam

- Stray field source unique for CLIC
- 243.7 ns, 101 A
- 0.5 m from main linac
- Field 'seen' by next main linac pulse (20ms later): 20 pT

Magnetic field induced by a drive beam at r=0.5m with 2mm copper shielding

Transfer line beam (3 m from drive beam) receive kicks of 5 nT (static effect), fluctuations much lower

Simulated by grid of dipole kickers with 1m distance

Tolerance (2% lumi loss): vert. emitt growth 0.4 nm

Sensitive to magnetic stray fields of ~ 1 nT

BDS sensitivity

anti-symmetric wrt IP

Sensitivities (uncorrected)

Tolerances for a 2% lumi loss

	resonances	random fluctuations
Transfer line	0.1 nT*	10 nT/m*
Main linac	10 nT	50 nT/m
Main linac + BDS	1 nT	10 nT/m

^{* =} beam offsets in the transfer line will be corrected for with a feed forward system after the turnaround loop

Turnaround + Feedforward

- A feed forward system after the turnaround loop can almost fully correct the beam offset in the transfer line
- Problem:
 - emittance growth in turnaround loop due to beam offset
- New lattice design by Frank Stulle (morning talk)

Emittance growth in TA due to beamoffset

Factor 10 improvement

Sensitivity strayfields RTML + TA Emittance

Potential mitigation techniques

- Stronger focusing (RTML)
- Avoid resonances
- Feed forward
- Shielding beamline
- Shielding sources
- Active compensation

Magnetic shielding 1

- varying magnetic waves induce eddy currents in conductors which cancel the field
- skin depth: depth on which an electromagnetic wave flows through a material

$$\delta = \sqrt{\frac{\rho}{(\pi \,\mu \,f)}}$$

effective for high frequencies (> kHz)

Magnetic shielding 2

 in addition to eddy current shielding some materials can redirect magnetic field lines

lower frequencies, but less effective for low (or

high) field strengths

rel. magnetic permeability

- steel (100-4k)
- mu-metal (Ni-Fe alloy) 20k-100k
- expensive
- several layers may be needed to achieve required level

Magnetic Shielding 3

- Helmholtz coils
 - produces nearly uniform field in one direction
 - can be used to cancel existing fields
 - fast measurement needed
 - 3 coils
 - lower frequencies (< kHz)
 - sub-pT level reached dedicated experiments (very low noise)
- Superconductors
 - Meissner effect: perfect shielding

Shielding beamline: passive

- natural shielding from beampipe
- current design beampipe:
 - transfer line 1.5 mm copper (about f > 2 kHz shielded)
 - main linac:
 - copper coated stainless steel 0.3 mm (f > ~3 kHz shielded)
 - copper RF structures 20 mm thick (f > 10 Hz shielded)
 - note that main linac consists of 80% RF structures
- additional shielding with e.g. several layers of mumetal
 - difficult due to low field strengths

BDS: collimation bends

- BDS sensitivity caused by collimation bends
- Shielding these regions would reduce sensitivity factor 10
- Could be done with superconducting bends

Shielding the sources

- Similar to passive shielding
 - lower skin depth, increase thickness
 - high permeability materials

- Easier due to stronger fields
- Easier to implement

- More shielding
- More different components

Shielding beamline: active

- Helmholtz coils
- Used at LIPSION (Leipzig, 2 MeV proton beam)
 - reduction from 1.5 μT -> 10 nT
 - improvements possible
- RTML and ML shielded at same time
- Space constraint in tunnel

Conclusions

- CLIC sensitive to stray fields < nT
 - Transfer line most sensitive
 - BDS also affected
- Magnetic shielding is needed
- Potential mitigation techniques have been presented
- Feed forward after turnaround is conceived to be essential
- Measurements are needed