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CLIC RTML Emittance Measurement
Generalities

Description

o Problem: Measure the Emittance at the end of RTML.

@ Possible solution: We propose a 2D Measurement section
based on a 4-FODO lattice.

o Unsolved issues: General specifications of the laser wire
(LW) beam profile monitor



CLIC RTML Emittance Measurement
Generalities

Emittance definition

4 x 4 Beam matrix

Projected emittance

= \/det By = /011020 — 02y = v/ (22)(22) — (xx')2
\/detEyy \/0330'44—0'34— \/ yy>

It will coincide with the intrinsic emittance if the beam is uncoupled, but

always €proj > Eintr-
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Figure: Line scheme
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CLIC RTML Emittance Measurement
Generalities

Phase advance per cell

Optimal phase advance per cell
The number of unphysical solutions of the system is minimal if*:

Ay = 180°/N

where N is the number of equations of the set (number of
scanners)

“I.Agapov, G.Blair, M.Woodley (2007)




CLIC RTML Emittance Measurement
RTML section

RTML general layout
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Figure: Ring to Main Linac layout (Courtesy of F.Stulle)



CLIC RTML Emittance Measurement
RTML section

RTML section parameters

Table: Beam parameters at the end of RTML

Property Symbol Value  Unit
Energy Ey 9 GeV
Bunch length Os 44 pm
Total energy spread R <17 %
Normalized emittance Enz < 600 nm rad
En,y <10 nmrad
Emittance error dez/ex < 10 %

dey/ey <10 %



CLIC RTML Emittance Measurement
2D Emittance measurement section

Design of the station lattice: MAD-X

o The most commmonly used lattice in a straight diagnostics
section is a FODO lattice

o In the proposed lattice the measurement is done by means
of four laser wire scanners with 2 LWs each. Therefore four
FODO cells compose the whole lattice.

o Contraints to be imposed:

e on the quadrupole strength to reduce chromaticity effects
e on the cell length to avoid having too small or too large
beam sizes

o MAD-X has a matching option to perform the adjustment
of the parameters (k and L)



CLIC RTML Emittance Measurement
2D Emittance measurement section

Design of the station lattice

o We develop 2D measurement line.

e Assuming that there is a Skew Correction Section
upstream, the beam matrix is uncoupled:

o — Ygx O
N 0 Xy

@ Set initial conditions for the Twiss functions
e Set phase advance per FODO cell (Ap = 180°/N)
@ Set contraints on the field strength k£ and cell length L

Steps to follow




CLIC RTML Emittance Measurement
2D Emittance measurement section

Design of the lattice of the emittance measurement line

Table: Key parameters of

the lattice design ‘ T : | : T : T l

40, _emitsia MAD-X 4.01.21 07/08/10 18.57.27
Lyjs [m] 10 : 35 ] ;’r\\ fﬁ\ f"l‘l\\ «’ﬁ\\
LT [I'Il] 81.6 S 30,1 ‘J‘j I‘\\ J;‘ \\.\ ‘f I‘\\ f’. \I\.‘
ly [m] 0.20 2l A ANAAA A
k[m=?] | 0.37765 = 2]
B [T] 0.7558 15
10. 4
5]
Prmax = 39.84m 0.0 T T T
Bmin = 17.83m o 20. 40. 60. 80. 100.

s (m)



Be = 39.84m B, = 17.83m

oz =ay =0

€g,N = 600nm rad &, y = 10nm rad

V@2) = VeanBa/7 = V/o%%; = 36.88um
V(@?) = Vexn/(Be7) = /0055 = 9.26 - 1077
\/y_=\/m=\/ﬁ=3.1sﬂm
V{2 = Veyn/(By) = \/00_52 =1.78-10""
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Generating Bunch

MAD-X line matching
Python

l

PTC tracking module

N=10000

Beam Size analyzer

Python

l—l

O'h = lela'u — 2R111R1120'12 + lezo'zz
o = R o1 — 2R2 R 5015 + R250m
od = R¥jo11 — 2R% 1 R¥ 15015 + R¥y0m
ot = R o0 — 2RY R o + R'y0m

Emittance Reconstruction

Matlab
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@ Beam size error = Error in oy

e Jitter error = Error in centroid position

2 _ 2 2
Oscan = Oe + Gjit
2
00,
_ 2 2
( - Escan + Ej't
Oe¢
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Figure: Horizontal and vertical emittance errors as a function of the

beam size measurement
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CLIC RTML Emittance Measurement
Simulations with beam and measurement errors included
Beam size error

Beam size error: 10% Relative error
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Figure: Distribution of reconstructed horizontal emittance for 10%
random errors of the beam size measurements



CLIC RTML Emittance Measurement
Simulations with beam and measurement errors included
Beam size error

Beam size error: 35% Relative error
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Figure: Distribution of reconstructed horizontal and vertical
emittance for 35% random errors of the beam size measurements



CLIC RTML Emittance Measurement
Simulations with beam and measurement errors included
Non-physical results

Non physical results

@ There are for which the emittance becomes complex i.e

g2 = 0110922 — 0'%2 < 0.

o The number of cases increases as we increase the beam size
error.
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Figure: Fraction of simulations with non-physical beam matrix as a
function of the beam measurement error



CLIC RTML Emittance Measurement

Simulations with beam and measurement errors included

Jitter error

Jitter error

o We introduce these errors as a shift in the initial
distribution i.e. (z) = (y) # 0.
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CLIC RTML Emittance Measurement
Laser Wire scheme

Laser Wire scheme
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o ATF studies reveal submicron measured beam sizes.

1G.A.Blair et al. 2001



CLIC RTML Emittance Measurement
Coclusions
Discussion of the results

Discussion of the results

e Line proposal?:

Skew Correction Section — |——s AFODO L » Laser Wire
Extraction system

L = 120m* L = 81.6m
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2The SCS lenght is taken from the ILC project




CLIC RTML Emittance Measurement
Future work

Future work

o Design of a Skew Correction Section.

o Determine general parameters of the LW beam profile
monitors and check its feasibility

e Consider/Design a section for extraction of Compton
scattered photons



Thank you!
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