Hector Garcia Morales¹

Yu.Kubyshin¹, F.Stulle², Eduard Marin^{1,2}, Daniel Schulte²

1 Universitat Politècnica de Catalunya, Barcelona 2 CERN, Geneve

IWLC 2010

October 20th

Sac

イロト イポト イヨト イヨト

Outline

- Generalities
- 2 RTML section
- 3 2D Emittance measurement section
- 4 Beam and measurement simulations
- **(5)** Simulations with beam and measurement errors included

- Beam size error
- Non-physical results
- Jitter error
- 6 Laser Wire scheme
- Coclusions
 - Discussion of the results
- 8 Future work

Description

- Problem: Measure the Emittance at the end of RTML.
- Possible solution: We propose a 2D Measurement section based on a 4-FODO lattice.
- Unsolved issues: General specifications of the laser wire (LW) beam profile monitor

CLIC RTML Emittance Measurement Generalities

Emittance definition

4×4 Beam matrix

$$\sigma = \begin{pmatrix} \langle x^2 \rangle & \langle xx' \rangle & \langle xy \rangle & \langle xy' \rangle \\ \langle xx' \rangle & \langle x'^2 \rangle & \langle x'y \rangle & \langle x'y' \rangle \\ \langle xy \rangle & \langle x'y \rangle & \langle y^2 \rangle & \langle yy' \rangle \\ \langle xy' \rangle & \langle x'y' \rangle & \langle yy' \rangle & \langle y'^2 \rangle \end{pmatrix} = \begin{pmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{xy}^T & \Sigma_{yy} \end{pmatrix}$$

Projected emittance

$$\varepsilon_x = \sqrt{\det \Sigma_{xx}} = \sqrt{\sigma_{11}\sigma_{22} - \sigma_{12}^2} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$
$$\varepsilon_y = \sqrt{\det \Sigma_{yy}} = \sqrt{\sigma_{33}\sigma_{44} - \sigma_{34}^2} = \sqrt{\langle y^2 \rangle \langle y'^2 \rangle - \langle yy' \rangle^2}$$

It will coincide with the intrinsic emittance if the beam is uncoupled, but always $\varepsilon_{\rm proj} > \varepsilon_{\rm intr}$.

CLIC RTML Emittance Measurement Generalities

Beam matrix transformation

Figure: Line scheme

・ロット (雪) (山) (山)

3

500

Transformation $\sigma_i = R_i \sigma_0 R_i^T$ $(\sigma_i)_{11} = (R_i)_{11}^2 (\sigma_0)_{11} - 2(R_i)_{11} (R_i)_{12} (\sigma_0)_{12} + (R_i)_{12}^2 (\sigma_0)_{22}$ $(\sigma_i)_{33} = (R_i)_{33}^2 (\sigma_0)_{33} - 2(R_i)_{33} (R_i)_{34} (\sigma_0)_{34} + (R_i)_{34}^2 (\sigma_0)_{44}$

CLIC RTML Emittance Measurement Generalities

Phase advance per cell

Optimal phase advance per cell The number of unphysical solutions of the system is minimal if^{*a*}:

$$\Delta \mu = 180^{\circ}/N$$

(日) (四) (日) (日)

Sac

where N is the number of equations of the set (number of scanners)

^aI.Agapov, G.Blair, M.Woodley (2007)

CLIC RTML Emittance Measurement RTML section

RTML general layout

Figure: Ring to Main Linac layout (Courtesy of F.Stulle)

イロト イロト イヨト イヨト ヨー のくで

RTML section parameters

Table: Beam parameters at the end of RTML

Property	Symbol	Value	Unit
Energy	E_0	9	GeV
Bunch length	σ_s	44	$\mu { m m}$
Total energy spread	$\sigma_{ m E}$	< 1.7	%
Normalized emittance	$\varepsilon_{n,x}$	< 600	$\operatorname{nm} \operatorname{rad}$
	$\varepsilon_{n,y}$	< 10	$\operatorname{nm} \operatorname{rad}$
Emittance error	$\delta \varepsilon_x / \varepsilon_x$	< 10	%
	$\delta \varepsilon_u / \varepsilon_u$	< 10	%

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ = のへぐ

2D Emittance measurement section

Design of the station lattice: MAD-X

- The most commonly used lattice in a straight diagnostics section is a FODO lattice
- In the proposed lattice the measurement is done by means of four laser wire scanners with 2 LWs each. Therefore four FODO cells compose the whole lattice.
- Contraints to be imposed:
 - on the quadrupole strength to reduce chromaticity effects
 - on the cell length to avoid having too small or too large beam sizes
- MAD-X has a matching option to perform the adjustment of the parameters (k and L)

2D Emittance measurement section

Design of the station lattice

- We develop 2D measurement line.
- Assuming that there is a Skew Correction Section upstream, the beam matrix is uncoupled:

$$\sigma = \left(\begin{array}{cc} \Sigma_{xx} & 0\\ 0 & \Sigma_{yy} \end{array}\right)$$

Steps to follow

- Set initial conditions for the Twiss functions
- Set phase advance per FODO cell $(\Delta \mu = 180^\circ/N)$
- Set contraints on the field strength k and cell length L

2D Emittance measurement section

Design of the lattice of the emittance measurement line

Table: Key parameters of the lattice design

$L_{1/2} [m]$	10
L_T [m]	81.6
l_q [m]	0.20
$k [{\rm m}^{-2}]$	0.37765
B[T]	0.7558

 $\beta_{\rm max} = 39.84 {\rm m}$

 $\beta_{\min} = 17.83 \mathrm{m}$

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Beam and measurement simulations

Initial beam

Twiss functions

$$eta_x = 39.84 \text{m}$$
 $eta_y = 17.83 \text{m}$
 $lpha_x = lpha_y = 0$
 $arepsilon_{x,N} = 600 \text{nm rad}$ $arepsilon_{y,N} = 10 \text{nm rad}$

Beam parameters

 $\langle x \rangle = \langle x' \rangle = 0$ $\langle y \rangle = \langle y' \rangle = 0$

$$\begin{split} \sqrt{\langle x^2 \rangle} &= \sqrt{\varepsilon_{x,N} \beta_x / \gamma} = \sqrt{\sigma_{11}^{0x}} = 36.88 \mu \mathrm{m} \\ \sqrt{\langle x'^2 \rangle} &= \sqrt{\varepsilon_{x,N} / (\beta_x \gamma)} = \sqrt{\sigma_{22}^{0x}} = 9.26 \cdot 10^{-7} \\ \sqrt{\langle y^2 \rangle} &= \sqrt{\varepsilon_{y,N} \beta_y / \gamma} = \sqrt{\sigma_{11}^{0y}} = 3.18 \mu \mathrm{m} \\ \sqrt{\langle y'^2 \rangle} &= \sqrt{\varepsilon_{y,N} / (\beta_y \gamma)} = \sqrt{\sigma_{22}^{0y}} = 1.78 \cdot 10^{-7} \end{split}$$

Beam and measurement simulations

Simulation scheme

Simulations with beam and measurement errors included

Error simulation

- Beam size error \Rightarrow Error in σ_0^i
- Jitter error \Rightarrow Error in centroid position

$$\sigma_{\text{scan}}^2 = \sigma_e^2 + \sigma_{\text{jit}}^2$$
$$\left(\frac{\delta\sigma_e}{\sigma_e}\right)^2 = E_{\text{scan}}^2 + E_{\text{jit}}^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ = のへぐ

Simulations with beam and measurement errors included

Beam size error

Beam size error

・ロト ・四ト ・ヨト ・ヨト ・ヨー

590

Figure: Horizontal and vertical emittance errors as a function of the beam size measurement

Simulations with beam and measurement errors included

Beam size error

Beam size error: 10% Relative error

Figure: Distribution of reconstructed horizontal emittance for 10% random errors of the beam size measurements

Simulations with beam and measurement errors included

Beam size error

Beam size error: 35% Relative error

Figure: Distribution of reconstructed horizontal and vertical emittance for 35% random errors of the beam size measurements

・ロット 今日 マイビット 小田 マー

Sac

Simulations with beam and measurement errors included Non-physical results

Non physical results

- There are for which the emittance becomes complex i.e $\varepsilon^2 = \sigma_{11}\sigma_{22} \sigma_{12}^2 < 0.$
- The number of cases increases as we increase the beam size error.

Sac

Simulations with beam and measurement errors included

Jitter error

Jitter error

We introduce these errors as a shift in the initial distribution i.e. ⟨x⟩ = ⟨y⟩ ≠ 0.

Figure: Horizontal and vertical emittance errors for the case of non-zero beam jitter

CLIC RTML Emittance Measurement Laser Wire scheme

Laser Wire scheme

• ATF studies reveal submicron measured beam sizes.

 1 G.A.Blair et al. 2001

1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Coclusions Discussion of the results

Discussion of the results

• Line proposal²:

CLIC RTML Emittance Measurement Future work

Future work

- Design of a Skew Correction Section.
- Determine general parameters of the LW beam profile monitors and check its feasibility
- Consider/Design a section for extraction of Compton scattered photons

Thank you!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで