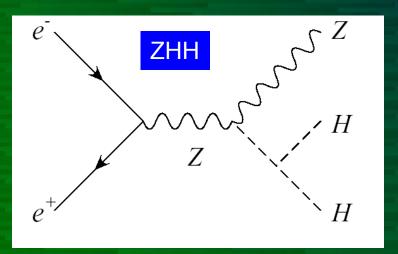
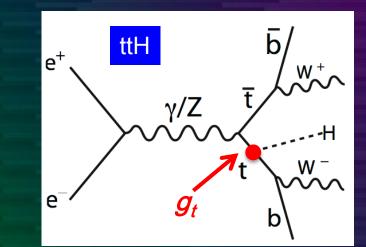
Flavor tagging performance in multi-jet environments (a part of LCFIVertex study)

Taikan Suehara

Tomohiko Tanabe, Satoru Yamashita (The Univ. of Tokyo)


Topics


- Importance of flavor tagging in multi-jet environments
- Performance of 6-jet clustering in ZHH
- Modified jet clustering

 Vertex finder without jet clustering
 Jet clustering with vertex information
 Preliminary performance

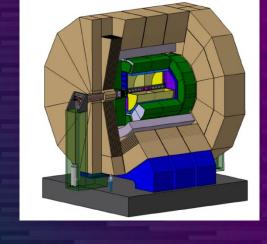
Multi-jet flavor analysis

Many LC physics targets have
Many jets (4, 6, 8, ...)
Many b jets (from H->bb, t->bW etc.)
b-tagging in multi-jet environment

qqbbbb (32%) qqbbWW(14%)bbbbqqqq(31%)vvbbbb (9%) etc. (120GeV Higgs)bbbbqqlv(31%) etc.Taikan Suehara et al., IWLC10 @ CERN, 21 Oct. 2010 page 3

Current ILD reconstruction

Full-MC simulation (Mokka)


Event reconstruction

- Digitization
- Tracking
- Particle flow (PandoraPFA)

Reconstructed particles
Jet clustering (Durham fixed # jets)
Jets (with tracks in each jet)

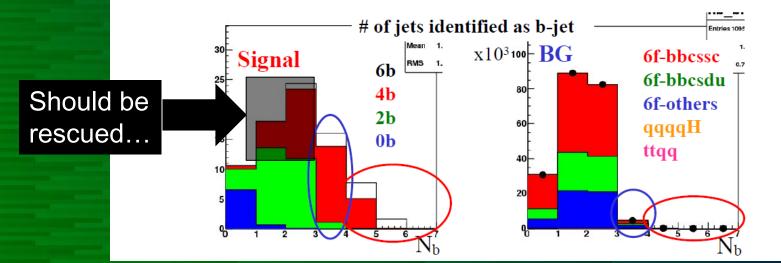
LCFIVertex

- ZVTOP vertex finder (for each jet)
- Neural-net based b-&c- tagging
- Quark charge identification

Jet clustering & vertex finder is independent

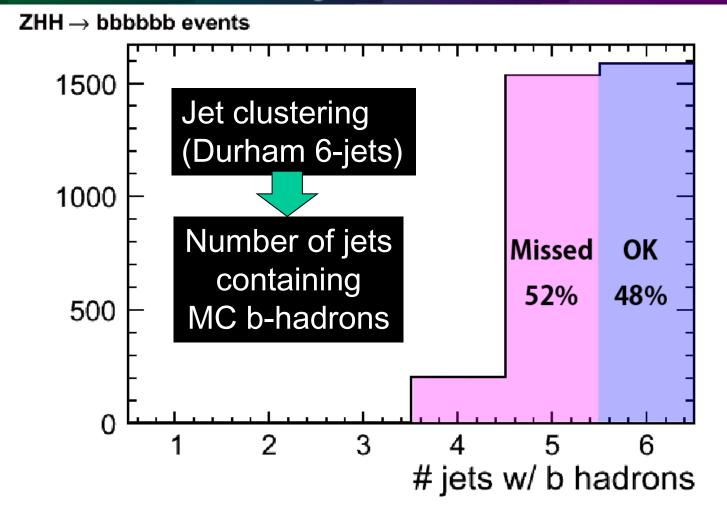
Mis-clustered jet gives wrong vertex/flavor result

B-tagging in ZHH (Z->qq)


Y. Takubo, ALCPG09 Selection of event samples

BG can be rejected effectively by using events with $N_b \ge 3$.

	No cut	$N_b = 3$	$N_b \ge 4$	
Signal	79	15.9(0.20)	9.5(0.12)	
BG	207,144	4663(0.02)	147(7 x 10 ⁻⁴)	


 σ = 0.16 fb

Events with $N_b = 3$ and $N_b \ge 4$ were selected as analysis samples.

b-tagging efficiency seems to be bad...

'# of b jets' in ZHH

of b-jets is reduced due to mis-jet-clustering.

Remedy: jet clustering with vtx. info

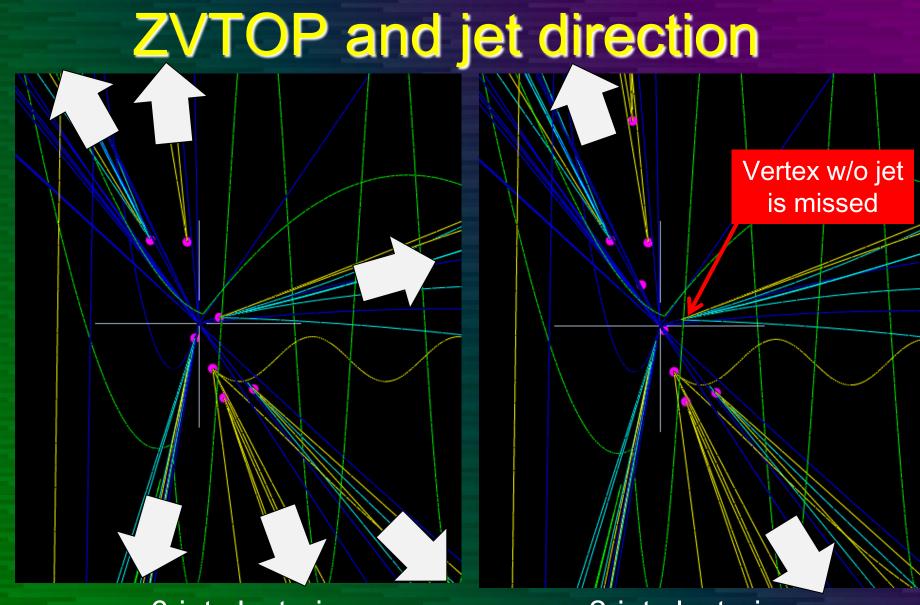
MC/digitization/tracking/PFA

Reconstructed particles

Vertex finder (w/o jet info) ZVTOP ? -> Problem!

Reconstructed particles + vertices

Jet clustering (original) Using vertex information (How?)


Jets (with tracks/vertices in each jet)

LCFIVertex

- Additional vertex finder?
- Neural-net based b-&c- tagging
- Quark charge identification

Today's talk: ideas and status in

- Vertex finder without jet information
- Jet clustering using vertex information

6-jet clustering

2-jet clustering

Need dedicated (or modified) vertex finder for jet clustering

Vertex finding methods

1. 'tear-down' method

- Fit a vertex with all tracks & eliminate the worst track repeat until χ^2 becomes under threshold
- Used to obtain primary vertex
- 2. 'build-up' method
 - Find a track pair which is crossed at certain point (vertex candidate) with low χ^2 associate other tracks into the candidate to make a vertex
 - Simple & good for secondary vertices
- 3. 'topological' method
 - Modified build-up: use vertex function instead of track χ^2
 - Adopted in ZVTOP

Easy-to-handle buildup vertex

- ZVTOP is packaged and completed not easy to modify – then we are developing a simple vertex finder with build-up method for the jet clustering
- Basic procedure
 - 1. Obtain primary vertex and remove all primary tracks
 - 2. Find PCA (point of closest approach) for every track pair
 - 1. Helix crossing (or nearest) point P in x-y plane (analytical)
 - 2. Helix is parameterized in x(t), y(t), z(t) error matrix is converted from $(d_0, z_0, \phi_0, \omega, tan\lambda)$ to (x, y, z)
 - 3. Optimize t of each track with Minuit to minimize χ^2 at P
 - 3. Optimize P(x,y,z) with Minuit to minimize sum χ^2

4. If sum χ^2 is over threshold, it is abandoned and try next

If sum χ^2 is under threshold, continue to next slide ... Taikan Suenara et al., IVLOID @ CEKIN, 21 OCL 2010 page 10

Build-up vertex (cont.)

5. Combine other tracks

- 1. Pick up a track with minimum χ^2 at P
- 2. Refit P with sum χ^2 of all tracks
- 6. Repeat 5. until all tracks have χ^2 over threshold
- 7. Select a vertex with the maximum priority
 - 1. > 3 tracks, vertex point nearest to IP
 - 2. 2 tracks with χ^2 < 1, vertex point nearest to IP
 - 3. 2 tracks with χ^2 < threshold, minimum χ^2

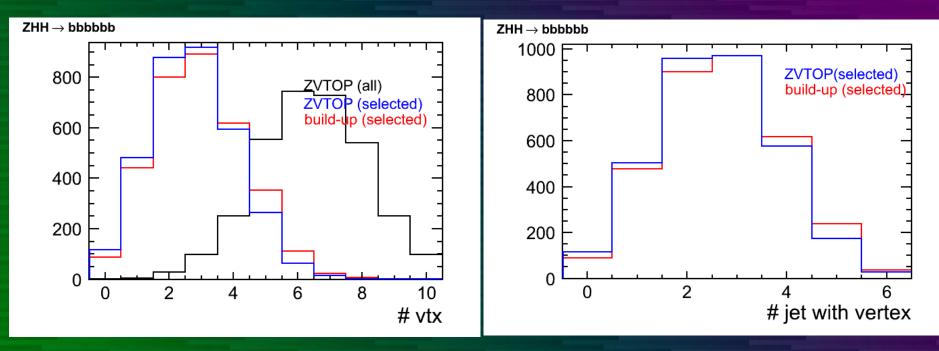
8. Repeat 2-7 until all vertices are selected

9. Move primary tracks to secondary if χ^2 to secondary vertex is smaller than to primary

Taikan Suehara et al., IWLC10 @ CERN, 21 Oct. 2010 page 11

selection

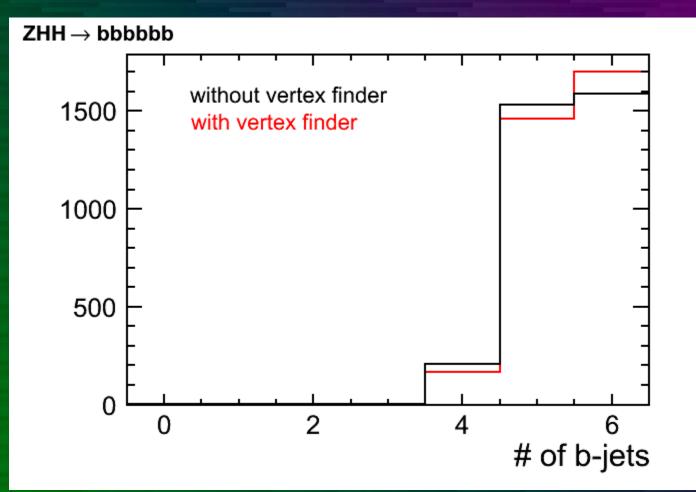
criteria


Vertex selection

- Fake vertex significantly degrades performance of the jet clustering
 Further vertex selection is necessary
- We currently select
 - Vertex with distance to IP 1-20 mm
 - Fake is concentrated around IP
 - χ^2 tends to be too low in far region (need study)
 - Far vertex is usually K_s⁰ or V0/conversion
 - And vertex with >= 3 tracks
 - Lose efficiency, but to avoid fakes (safety)

Jet clustering with the vertices

- Jet clustering with vertices
 - Combine all tracks in the vertex as a 'single particle' with summed 4-momentum
 - Avoid merging jets containing a vertex
 all vertices should be separated to different jets (make y value infinite if both jets have vertices)
- Vertex combination
 - c- and b- vertex must be combined before the jet clustering to avoid forced separation
 - Currently 'CHEATED' use MC to combine
 - Efficient vertex combination method is needed


Performance - # of vertices

 # of reconstructed vertices
 - comparable number in ZVTOP and build-up # of jets containing vertices
- also comparable
~ half of jets have vertices

Vertex purity: 87% (ZVTOP-all), 99% (ZVTOP-selected), 98% (buildup-selected)

Performance - # of b-jets

Slight improvement can be seen!

Next steps

Vertex combination – now developing

- Use mass variables
 - Pt-corrected mass?
 Need to include vertex position uncertainty
- Vertex selection
 - Current selection is too tight:
 better efficiency is needed for jet clustering
 - Fake must be strongly suppressed
- Optimizing vertex finder
 <u>— Treatment on 2-track vertices</u>
- Speed currently extremely slow (a few min./event)
- Apply b-tagging rather than counting MC b-hadrons

Summary & comment

- Flavor tagging in multi-jet environments is very important. – ex. ZHH, ttH...
- Some of b-hadrons are into the same jet degrades analysis power significantly
- Jet clustering using vertex information can help to separate b-jets
 Preliminary work indicates the improvement
- Another strategy: kinematic constraint jet clustering (ex. requiring W/Z/H/t with specific number of b-/c-/light jets)