

Re-entrant Cavity Geometry for Increasing Gradients

Department of Physics, CLASSE Cornell University Georg Hoffstaetter for the SRF group

October 21, 2010

- SRF performance has been rising every decade
- SRF installations for HEP (and other applications, e.g. NP, spallation, light sources, ADS) have been rising steadily
- With strong support, SRF can continue to make major impact on future HEP accelerators
 - ILC, TeV upgrade, Superbeams for Neutrinos, Neutrino Factory, Muon Collider, Multi-TeV colliders
- This provides important spinoff for
 - Nuclear Physics colliders (e.g. eRHIC)
 - Spallation sources (e.g. ESS)
 - Light sources (e.g. x-ray ERL)
 - Accelerator Driven Systems (ADS) energy sources and transmutation of nuclear waste.

Increase of SRF Gradients Multi-

cells, 1995 - 2006 => 42 MV/m

 Accelerating gradients in superconducting cavities have increased from 5 MV/m to over 45 MV/m over the past 35 years. How much higher can the fields be pushed?

Background

• The maximum attainable gradient is limited by the <u>critical magnetic field</u> on the surface of the cavity. At this field, superconductivity breaks down.

Surface Magnetic and Electric Fields

1 MV/m Accelerating Field

Philosophy:

- Critical magnetic field at equator region is a brick wall.
- Losses from field emission can be reduced by HPR and HPP
- -> Lower Hpk for desired Eacc

Even if we must raise Epk

+ Variations

Comparison

Single cell, 1.3 GHz niobium cavities of various shapes

- (a) TTF-like
- (b) KEK, Low-loss (ICHIRO) 60 mm aperture
- (c) Cornell Re-entrant 70 mm aperture
- (d) Cornell Re-entrant 60 mm aperture.

Re-entrant Shape #1: Laboratory for Elementary-Particle Physics Keep the 70 mm TESLA Aperture for Low Wakes

Philosophy:

• -> Lower Hpk

δe, %

0

+10

+20

+30

+40

limit).

Cornell University

Geometry

Georg.Hoffstaetter@cornell.edu

ILC-CLIC Meeting

• RF Critical magnetic field is

 δh , %

-5.07

-7.92

-10.00

-11.36

-12.30

Even if we must raise Epk

a brick wall (fundamental

Details of Optimization

	TTF	RE-1	LL	RE-2
Ra/mm	70	70	61*	60
$\frac{H_{pk}/E_{acc}}{4.15mT/(MV/m)}$	1	0.91	0.87	0.85
$\frac{E_{\it pk}/E_{\it acc}}{1.98}$	1	1.21	1.19	1.15
$\frac{GR/Q}{30840\Omega^2}$	1	1.09	1.23	1.34
Cell coupling	1.9%	2.38%	1.52%	1.57%
$lpha^{\circ}$	103°	72.93°	98°	75.75°

*recalculated to 1300 MHz (actually 1500)

- Higher wakefields
 - LL shape : k_l up 20%, k_t up 70%
 - RE shape : same as TESLA shape
- Smaller cell-to-cell coupling LL shape
 - More sensitivity to mechanical tolerances
 - 1.5% instead of TTF 1.9%
- Higher R/Q
 - Lower cryogenic losses by 20%
- LL and RE
 - Slightly higher Lorentz-Force detuning
 - See next slide

Mechanical properties. Lorentz forces (2)

Fermilab Lorentz force detuning. Re-entrant vs Low Losses structures -0.75 -0.8 KL [Hz/(MV/m)^2)] -0.85 -0.9 Re-entrant -0.95 Low Losses -1 -1.05 -1.1 40 45 50 55 60 65 70 Radius of stiffening ring (mm) TESLA(wall=2.8mm) △F(wo/w ring) = - 801/-463 Hz for 25 MV/m Low Losses(2.8mm) $\Delta F(wo/w ring) = -871/-509$ Hz for 25 MV/m Re-entrant(2.8mm) ∆F(wo/w ring) = - 860/-517 Hz for 25 MV/m

FNAL-Japan meeting Feb8,2005

Nikolay Solyak

Georg.Hoffstaetter@cornell.edu

22

- New treatments
 - Post-purified to RRR >600 (at Cornell)
 - Centrifugal Barrel Polish at KEK
 - to smooth welds
- EP and H-degassing at KEK
- HPR at KEK

RE single-cell cavity VT

RE-12th meas.

- Cornell fabricated and purified new-shape cavity
- KEK processed and tested cavity
- World record (2006) Eacc = 53 MV/m

Compare Performance to LL and IS

October 21, 2010

- Aperture of re-entrant cavity reduced from 70 mm (Tesla-shape) to 60 mm (like LL shape) to reduce Hpk/Eacc for RE cavity from 3.8 to 3.5 mT/(MV/m)
- Cavity fabricated and post purified (RRR > 600) at Cornell, sent to KEK
- Centrifugal Barrel Polishing and Horizontal EP at KEK, HPR
 - Tests at KEK limited by field emission to 45 MV/m, due to water quality at Nomura Plating.

- Return to Cornell
- HPR 2 hours and test

60mm-Aperture Re-entrant Cavity 58 MV/m! KEK/Cornell

Cornell: fabrication and purification ٠

Cornell 60 mm aperture re-entrant cavity LR1-3 March 14, 2007

RE-LR1-3

High Peak Power Pulsed Measurements

Surface Reaches 0.2 T (closer to $H_{superheating}$) (equiv. Eacc = 56.5 MV/m)

Re-entrant Shapes Reach 58 MV/m in Single Cells !

60 mm Reentrant Cornell KEK

70 mm Reentrant Cornell KEK

70 mm Tesla Shape

Evolution of Accelerating and Surface Magnetic Fields

Compare to Theories for RF Critical Field

Georg.Hoffstaetter@cornell.edu ILC-CLIC Meeting October 21, 2010

AES Re-Entrant 9-cell, First Test July 07

Quench

Preparation: 36 micrometers removed by VEP after fabrication.

Half cells were electropolished 100 microns before fabrication.

No H degas. 120 degree x 48 hour bake.

Need more EP to remove machining damage

- 1) Large Pit Defect located with second sound
- 2) Tumbling to repair, and reprocessing $E_{acc} > 30MV/m$ in the repaired cell.
- 3) When excited in the $5\pi/9$ -mode, $E_{acc} = 37$ MV/m in the center cell.
- 4) Reduced Q was repaired by additional 2h, 800C baking.

Conclusions:

- 1) Tumbling is an effective option to repair weld defects, e.g. pits.
- 2) Individual cells in cavities processed with VEP can reach fields exceeding 35MV/m for satisfactory Q values.

- Study single cells of both shapes
 - 53 and 58 MV/m (small aperture) records
- Continue Multicell re-entrant cavities
 - Stiffen 9-cell fabricated by AES
 - Apply post purification (used for record fields in single cells)
 - Fabricate 3-cell re-entrant and 5-cell re-entrant in house

Acknowledgements

October 21, 2010

- Thanks to Hasan Padamsee who lead the reentrant development and provided graphs and information of this presentation.
- Thanks to Rongli Geng, who managed much of the project and tested the RE cavity at Cornell.
- Thanks to Valery Shemelin who optimized the shape of the RE cavity.

ILC-CLIC Meeting