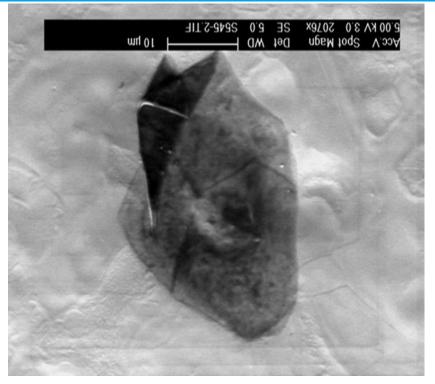
Dry-ice (CO₂-snow) Cleaning

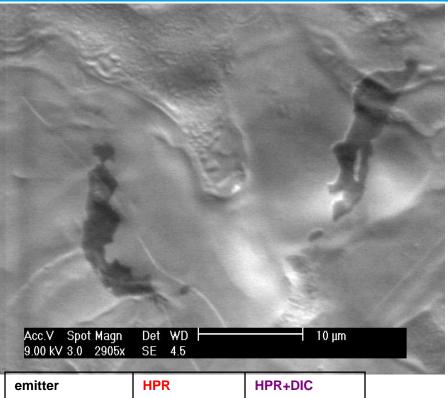
- Motivation
- Cleaning mechanism, technique & apparatus
- Nb cavity results
- Copper rf gun cleaning
- Summary, open topics + next steps

Detlef Reschke, Arne Brinkmann

IWLC-2010, Oct. 21st, 2010



- High cleaning potential for removal of particles + field emission by dryice cleaning proven on samples
 publications by Univ. Wuppertal (e.g. SRF Workshops, ...)
- > Additional cleaning option: no replacement of high pressure water rinse !
- > advantages of dry-ice cleaning:
 - Effective removal of particulate and film contamination
 - Dry cleaning process
- => horizontal cleaning option of Nb cavities
 => final cleaning just before string assembly
 => all applications unsuitable for water
 - e.g. application to Cu gun cavity
- => no drying procedure necessary



Effect of DIC on a flake-like emitter (courtesy Univ. Wuppertal)

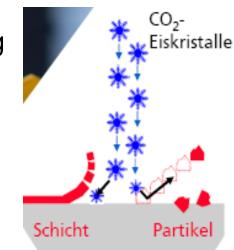
emitter of ~ 20 μ m size destroyed by DIC remnants emitting at higher E_{on} !

EDX: no foreign element detected (probably oxide of Nb)

emitter	HPR	HPR+DIC
E _{on} (MV/m)	54.3	62.8
β↑	67.4	35.4
β↓	51.2	38.0
S _↑ (m²)	2 10 ⁻¹⁷	8.3 10 ⁻¹³
S _↓ (m²)	1.2 10 ⁻¹⁵	2.4 10 ⁻¹³

- High cleaning potential for removal of particles + field emission by dryice cleaning proven on samples
 publications by Univ. Wuppertal (e.g. SRF Workshops, ...)
- > Additional cleaning option: no replacement of high pressure water rinse !
- > advantages of dry-ice cleaning:
 - Effective removal of particulate and film contamination
 - Dry cleaning process
- => horizontal cleaning option of Nb cavities
 => final cleaning just before string assembly
 => all applications unsuitable for water
 - e.g. application to Cu gun cavity
- => no drying procedure necessary

Cleaning mechanism


dry-ice "snow": mechanical, thermal + chemical cleaning forces

- thermo-mechanical:

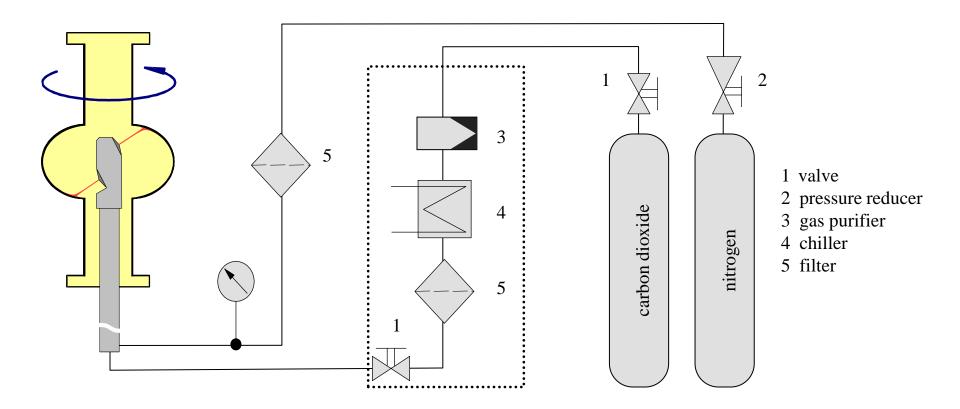
 i) embrittling by shock-freezing
 ii) shearing forces by high momentum
 iii) drastic volume increase by sublimation
- chemical: liquid CO_2 acts as solvent for hydrocarbons + silicone

=> embrittling, blasting, shearing, dissolving, washing

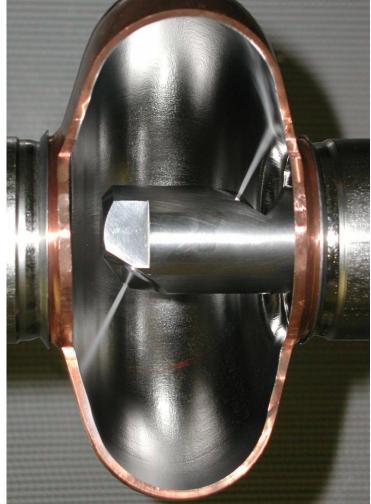
- removal of particles down to < 100nm</p>
- local, dry, without residues
- simple checks with air and surface particle counters possible

Cleaning technique

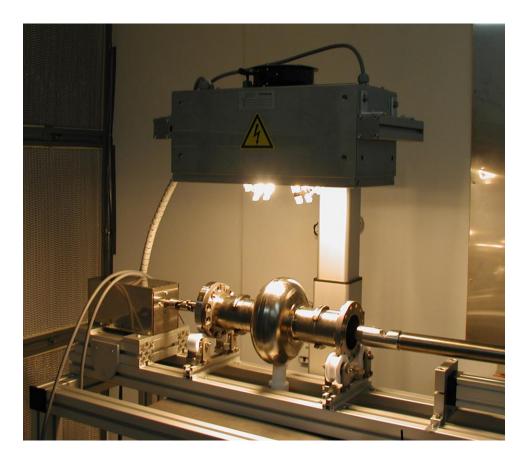
- patent-registered nozzle design for CO₂ surrounded by nitrogen designed by Fraunhofer IPA, Stuttgart, Germany
- spontaneous formation of snow/gas mixture by relaxation of liquid CO₂
 app. 40-45% snow at -78,9 C; ~50-55 bar
- surrounding supersonic nitrogen gas (20 C; (12-18)bar) => accelerating + focussing of jet
 - => (partially) avoidance of condensation of humidity



Apparatus: General


schematic of dry-ice cleaning set-up

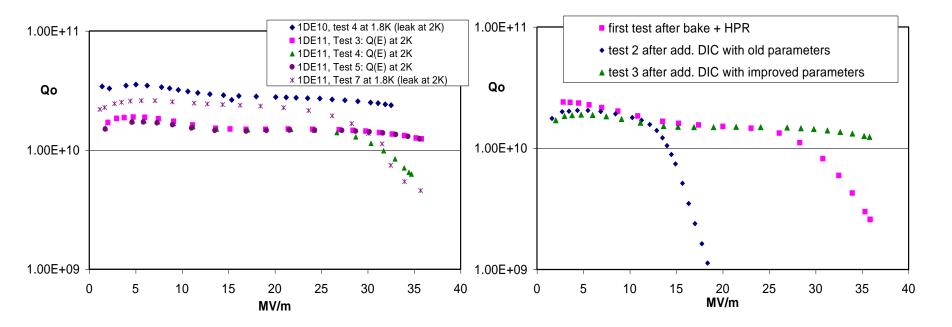
Apparatus: key components + operation



Detlef Reschke, Arne Brinkmann | IWLC-2010 | Oct. 21, 2010 | Page 8

Apparatus: key components + operation

> system for horizontal cleaning of (1-3)-cell cavities in stable operation



Detlef Reschke, Arne Brinkmann | TWLC-2010 | Oct. 21, 2010 | Page

Single cell Nb cavity results

- Results with actual cleaning parameters:
- => 3 of 5 tests show no fieldemission up to 35 MV/m; 2 tests with moderate FE
- > Potential to remove HPR resistant field emitters ??

Copper rf gun cavity cleaning

Task: cleaning of the copper rf gun cavity of the photo injector for FLASH and European XFEL

> Goal:

effective removal of particles => low dark current with no oxidation of Cu

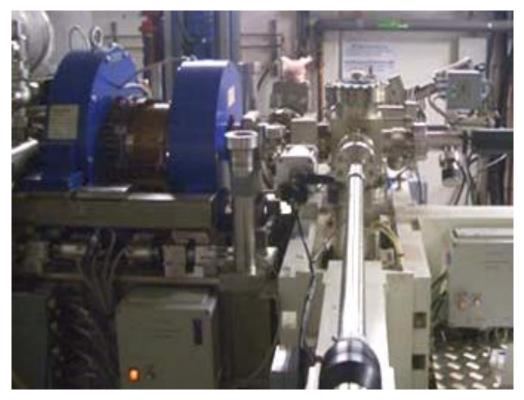
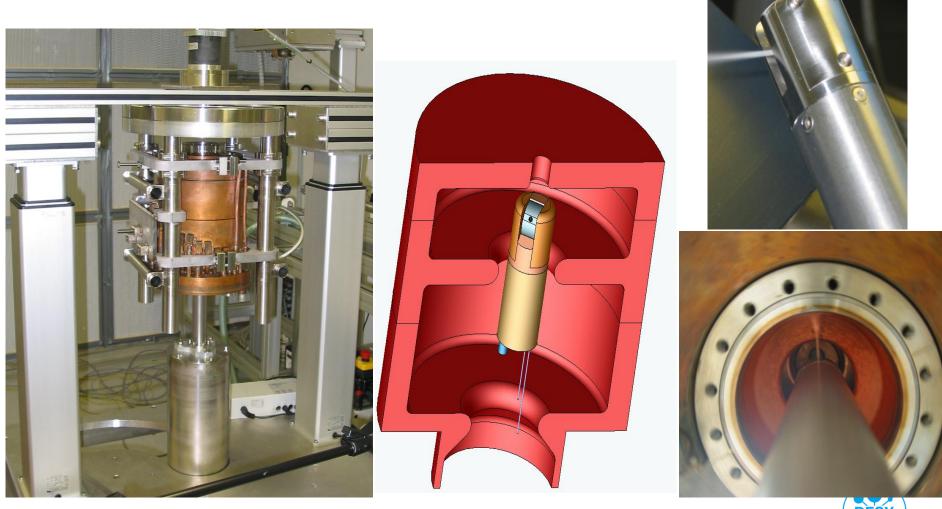
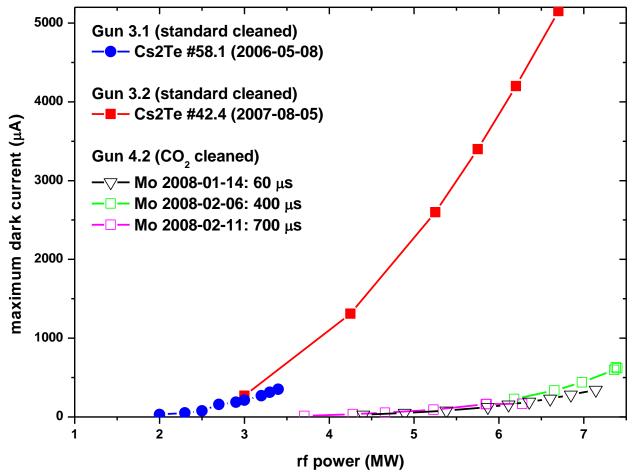



Photo injector area with rf gun cavity at FLASH


Copper rf gun cavity cleaning (ctd.)

> new vertical cleaning stand with modified movable nozzle

Copper rf gun cavity cleaning: first result

three guns cleaned example: gun cavity 4.2 conditioning at PITZ => dark current during gun processing app. factor 20 reduced

Detlef Reschke, Arne Brinkmann | IWLC-2010 | Oct. 21, 2010 | Page 13

Open topics + ideas

- > Further optimisation of cleaning parameters:
 - reduced CO₂-capillary size, cleaning speed
 - = reduce consumption of CO₂
 - => reduce/avoid moisture condensation
 - => avoid heating ??
- What is the "better" nozzle head: One movable nozzle vs. two fixed nozzles? (angle of nozzles?)
- > Heating of cavity or inert gas atmosphere ??
- Improved drive system of cavity

Summary + Outlook

> In operation:

- horizontal cleaning of (1-3) cell cavities => successful
- cleaning of 1.3 GHz Cu gun cavity with movable nozzle => successful

> Future:

- Cleaning of **REGAE** (Relativistic Electron Gun for Atomic Explorations)
- Regular cleaning of 1.3 GHz gun cavities for FLASH and European XFEL
- Cleaning of water sensitive special parts

> Options:

- Extension to Nb nine-cell accelerator cavities ?
- Cleaning of full accelerator modules ???

