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Overview of CLIC layout
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Introduction: CLIC damping rings
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CLIC wiggler’s optimum efficiency

Scaling of the extracted emittances

with the wiggler field and period. In

the left plots the extracted emittances

are shown, while in the right ones the

ratio between the extracted and the

zero current emittances. The black

dots indicate solutions where all the

emittance requirements are met. The

longitudinal emittance is kept

constant. (F. Antoniou et al.,

WEPE085, IPAC’10)

Possible wire
technologies: Nb3Sn or
Nb-Ti
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Introduction: Motivation and mechanical tolerances

Equilibrium Emittance γǫx ≈ γǫa
Jxa

Jxa+Fw
+ γǫw

Fw

Jxa+Fw

Generated Equilibrium Emittance γǫ =
Cqγ3

Jx

I5
I2

Damping via photon emission I2 =
H

1
ρ2

Excitation via dispersion I5 =
H

H

|ρ3|dz

Jx ≈ 1 Fw = I2w
I2a

H = γ(z)η2 + 2α(z)ηη′ + β(z)η′2

Specified equilibrium emittances γǫx ≤ 500 nm.rad γǫy ≤ 5 nm.rad
Specified maximum damping time τy ≤ 1.91 ms

Mechanical Tolerances for Nb-Ti baseline design

σ(B∗) 0.2 T
σ(λ∗) 1mm

µ(γǫx), γǫx 312.1 nm.rad, 309.7 nm.rad
σ(γǫx) 0.2315 nm.rad

Source: P. Emma and T. Raubenhemier, Phys. Rev. ST AB, Vol 4, 021001 (2001) 7 / 25



Design: Options for CLIC damping wigglers

Nb3Sn Nb3Sn Nb-Ti Nb-Ti

Period Length λ, mm 40 50 50 50
Gap (beam stay clear), mm 13 13 13 13
Gap (magnetic), mm 18 18 18-20 18-20
Mid plane field, T ≥ 2.5 ≥ 3.7 ≤ 2.5 ≤ 3.0
Peak Field, T 7.9 10.5 6.2 7.5
LL, A/T 157 ≈105 105 105
Operating Current, A 1100 1000 660 790
Inductance at operating current, H 0.5 0.5 1.5 1.5
Operating temperature ≈ 5K ≈ 5K 4K 1.9 K
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Strands: Options for CLIC damping wigglers

Nb-Ti BINP Nb-Ti CERN RRP Nb3Sn

Strand ø, mm 0.85 0.61 × 1.13 0.81
A, mm2 0.57 0.69 0.52
Insulated ø, mm 0.91-0.92 0.73 × 1.25 0.94
Form round rect. (+20%) round
SC/Cu ratio 1.5/1 1/1.8 1.1/1
Quench current 700 (4.2 K, 50 mm) 730 (4.2K, 40 mm) 1100 (4.2K, 40 mm)

830 (1.9 K, 50 mm) 950 (1.9K, 40 mm) 1000 (4.2K, 50 mm)
Tc, K 9.6 9.6 18.1
RRR 100 >100 300
Filament ø, µm ≤ 45 ≤ 7 ≤ 80
Insulation Imidal Varnish PVA Enamel S-Glass braid
Total, km 1700 1700 1700
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Conceptual wiggler design: Magnetic design

Version 1 (CERN):

Version 2 (ANKA and BINP like):
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Conceptual design: Nb3Sn

Sensitivity Harmonics Roll-off
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Manufacturing and testing: Nb-Ti racetrack design
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Nb3Sn test results: Manufacturing
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Nb3Sn test results: Measurements

Short sample currents were reached without training at 1.9 K
and after TC at 4.3 K: High enthalpy margin pays off!
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Nb3Sn test results: Discussion

Quench propagation for different T
and I :
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Feasible manufacturing process.

No training needed.

Operation at ≥4.3 K preferable
(self-field instabilities at 1.9 K).

More enthalpy and current
margin as Nb-Ti.

More margin with shorter heat
treatment.

Voltage over coil at 4.3 K:
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Image currents & Synchrotron radiation

Image currents in a cold-bore undulator (Popobedov, 2009):

Good conducting coating: P/L =
Γ( 5

6
)cZ0

4bπ2
BMat

I2
av

σ
5
3
z ηfRF

≈ 1
W

m

Poor conducting coating: P/L =
Γ( 3

4
)c
√

Z0√
32bπ2

1√
σc

I2
av

σ
3
2
z ηfRF

≈ 32
W

m

Synchrotron Radiation Heat Load:

Odd numbered chamber heat load:

20W/m (can be reduced to 10 W/m with

HC: 7.5mm)

Even numbered chamber heat load: <

1W/m
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Modified absorption scheme

Optimized Absorber Shapes

Element Length [m] V [mm] H [mm] Shape

Horizontal Absorber 0.5 13.5 12.3 Rectangular
Vertical Absorber 0.5 9.5 12.5 Rectangular

Water cooled copper absorbers,
power density up to 200 W/cm
(PETRA III value) =⇒ at least
60 cm absorber.

Absorber has to be in warm =⇒
2 × 0.4-0.5 m warm-cold
transition (Maccaferri, LER
2009).

Space for quadrupoles, steerers,
BPMs, etc.

MORE SPACE NEEDED

BETWEEN WIGGLERS!
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E-cloud simulations

Calculations with ECLOUD by Giovanni Rumulo.

99.9% synchrotron radiation was assumed to be absorbed.

The 1GHz option has been considered, bunch spacing 1 ns.
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Multipacting does not affect the
electron beam in the wigglers.

No serious e-cloud induced heat
load limitations seem to be present
in the electron ring.

Vacuum requirements have to be
specified.

Multipacting appears in the
positron ring for δmax above 1.3
which is the same level as for SPS,
out-gassing and aging (increase of
SEY with time) are under study.

Electron clouds are not tolerable
(heat load, beam stability, etc.).
Therefore, low SEY coating such as
amorphous carbon or NEG is
needed.
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Attenuation & eddy currents

Material [l] = 1 µm [lmax] = 1 µm

Al 4.628 454
Cu 0.1965 19
Fe 0.298 29

Attenuation

 

Synchrot
ron

rad
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l
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Source: Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption

Coefficients, http://www.nist.gov/physlab/data/xraycoef/index.cfm

Eddy currents induced after quench
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Beam-pipe design

Main purpose of cryostat and beam-pipe:

Mechanical alignment of yaw, pitch, and roll and improved mechanical
stiffness Iy (rod needed)

Insulation of heat flux (further investigation in TDR phase)

Shielding against X-rays (no issue with metal beam-pipe)

Vacuum: 10−10 mbar (experiments needed)

Low secondary electron emission yield (coating with NEG, amorphous
C, as SPS; open issues: vacuum and resistivity)
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Powering scheme and magnet protection

Powering of 13 wigglers in series
Electronic Protection System
IGCT-based switches: 1 kA, 1 kV, ≪ 1 s
Protection with cold parallel resistors, and if needed
quench heaters
Quench propagation can be measured with small prototype

Image: Courtesy of Gert-Jan Coelingh 21 / 25



Simulation results: Magnet protection

Simulations with PSpice
(Emmanuele Ravaioli):

R quench model needs
to be updated for other
strands

Rext = 1.2 Ω

Rp = 20mΩ

11 kJ stored
energy/module

30 modules/wiggler

MIITs around 0.03
MIITs

Rext can be optimized to
deposit little energy into
Helium
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Outlook
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Summary and conclusion

Short models show technical feasibility of Nb-Ti wigglers,
but with extremely small margin to the critical current. A
prototype is foreseen to be installed until 2012 in ANKA.

Nb3Sn test coil was successfully tested, feasible
manufacturing process was shown.

Nb3Sn wigglers are less sensitive for beam heat load, can
be operated at 5 K, and can generate higher magnetic
fields. In the presented wiggler design stress and strain
remains small. Therefore, this design is ideal for Nb3Sn. A
prototype is foreseen to be installed in a storage ring until
2014.

Heat load can be handled. However, damping rings have to
be enlarged.
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The end

Thank you!
Any questions?

Please check also superconducting magnet section at:
http://project-clic-cdr.web.cern.ch/project-clic-cdr/
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