Luminosity Weighted Polarization

International Workshop on Linear Colliders 2010 October 18-22, 2010

Outline of Talk
Polarized Physics
Polarization at ILC and CLIC
Upstream Polarimeter
Downstream Polarimeter
Orbit angle concerns

Ken Moffeit, SLAC

Physics with polarized beams

Cross section enhanced or reduced

The cross sections can be enhanced or reduced by an appropriate choice of the polarization states. This allows to suppress the background: For instance, a ratio of 'undesired' to 'desired' polarization states, $\left[\left(1-P_{e^{-}}\right)\left(1-P_{+}\right)\right] /\left[\left(1+P_{e^{-}}\right)\left(1+P_{e^{+}}\right)\right]$, yields a background reduction by a factor 4 having $(80 \%, 60 \%)$ polarization instead of $(80 \%$, $0 \%)$. A positron polarisation of 30% reduces this undesired background by a factor 2 .

Positron Polarization important
Comparison with ($\mathrm{Pe}-=80 \%, \mathrm{Pe}^{+}=0$) estimated gain factor when ($\mathrm{Pe}^{-}=80 \%, \mathrm{Pe}^{+}=60 \%$) ($\mathrm{Pe}-=80 \%, \mathrm{Pe}^{+}=30 \%$)

Case	Effects for $P\left(e^{-}\right) \longrightarrow P\left(e^{-}\right)$and $P\left(e^{+}\right)$	Gain\& Requirement	$P_{e^{-}}^{\mathrm{T}} P_{e^{+}}^{\mathrm{T}}$ required
Standard Model:			
top threshold	Electroweak coupling measurement	factor 3	gain factor 2 gain factor 1.4
$t \bar{q}$	Limits for FCN top couplings improved	factor 1.8	
CPV in $t \bar{t}$	Azimuthal CP-odd asymmetries give access to S - and T-currents up to 10 TeV	$P_{e^{-}}^{\mathrm{T}} P_{e^{+}}^{\mathrm{T}}$ required	$P_{e^{-}}^{T} P_{e^{+}}^{T}$ required
$W^{+} W^{-}$	Enhancement of $\frac{S}{B}, \frac{S}{\sqrt{B}}$	up to a factor 2	
	TGC: error reduction of $\Delta \kappa_{\gamma}, \Delta \lambda_{\gamma}, \Delta \kappa z, \Delta \lambda_{Z}$	factor 1.8	
	Specific TGC $\tilde{h}_{+}=\operatorname{Im}\left(g_{1}^{\mathrm{R}}+\kappa^{\mathrm{R}}\right) / \sqrt{2}$	$P_{e^{-}}^{\mathrm{T}} P_{e^{+}}^{\mathrm{T}}$ required	
CPV in γZ	Anomalous TGC $\gamma \gamma Z, \gamma Z Z$	$P_{e^{-}}^{\mathrm{T}} P_{e^{+}}^{\mathrm{T}}$ required	gain factor 2
HZ	Separation: $H Z \leftrightarrow H \bar{\nu} \nu$	factor 4	
	Suppression of $B=W^{+} \ell^{-} \nu$	factor 1.7	
$t \bar{t} H$	Top Yukawa coupling measurement at $\sqrt{s}=500 \mathrm{GeV}$	factor 2.5	gain factor 1.6

CLIC at $\mathrm{E}_{\mathrm{cm}}=3000 \mathrm{GeV}$
Conventional positron source planned with

$$
P_{e^{+}}=0
$$

Upstream Polarimeter

 Angle of beam required to be within $20 \mu \mathrm{rad}$ of that at the IR and location needs to be before energy

Machine-Detector Interface Issues

BDS and Polarimeter Alignment

Accelerator Alignment Tolerances (from RDR Volume 3, Table 4.7-1)

Area	Type	Tolerance		
Sources, Damping Rings and RTML	Offset	$150 \mu \mathrm{~m}$ (horizontal and vertical), over a distance of 100 m. $100 \mu \mathrm{rad}$		
Main Linac (cryomodules)	Roll	Offset		
Pitch				
Roll				$200 \mu \mathrm{~m}$ (horizontal and vertical), over a distance of 200 m. $20 \mu \mathrm{rad}$
:---				
BDS				

- locally, achieve $1 \mu \mathrm{rad}$ over distances up to 200 m -can probably extrapolate this to achieving $10 \mu \mathrm{rad}$ over 2000 m ; will be complicated by the 1.5 m offset of the upstream polarimeter IP \rightarrow need to flesh out procedure

Spin precession:

$$
\theta_{s p m}=\gamma \frac{g-2}{2} \cdot \theta_{\text {bend }}=\frac{E(G e V)}{0.44065} \cdot \theta_{\text {bend }}
$$

at $E=250 \mathrm{GeV}$,

$\theta_{\text {bend }}$	$\theta_{\text {spin }}$	$\boldsymbol{\operatorname { c o s }}\left(\theta_{\text {spin }}\right)$
$50 \mu \mathrm{rad}$	28.3 mrad	0.9996
$100 \mu \mathrm{rad}$	56.7 mrad	0.9984

Goal for Spin Alignment: $<50 \mu \mathrm{rad}$ between beam direction at polarimeters and IP \rightarrow spin rotator optimization should be identical for upstream \& downstream polarimeters
\rightarrow monitor correlations of polarimeter measurements with local BPM trajectories; + downstream polarimeter can monitor correlations with IP BPM trajectories5

CLIC: For $\delta P / P=0.1 \%$ implies angle at Compton IP and IR is aligned to better than $13 \mu \mathrm{rad}$

Polarimetry in the BDS of the ILC

Beam Delivery System (BDS) as described in the RDR. The upper part shows the region from 2200 m to 1200 m upstream of the $e^{+} e^{-I P}$, including the polarimeter chicane at 1800 m . The lower part shows the region from 1200 m upstream to 400 m downstream of the IP, including the upstream energy spectrometer at 700 m as well as the extraction line energy spectrometer and polarimeter around 100 m downstream of the IP located at $\mathrm{z}=0 \mathrm{~m}$.

Compton Cross Section and Compton Endpoint Energy

(a) Compton differential cross section versus scattered electron energy for same (red curve) and opposite (green curve) helicity configuration of laser photon and beam electron.

(b) Compton edge energy dependence on beam energy.

The beam energy is 250 GeV and the laser photon energy is 2.3 eV .

Upstream Polarimeter: Chicane

Schematic of the upstream polarimeter chicane.

- Constant B-field: Compton edge position independent of E_{b}
- same laser frequency for all E_{b}
- laser IP moves horizontally with E_{b} by ~ 10 cm
=> vacuum chamber and laser optics have been designed accordingly

Schematic of a single gas tube (left) and the complete hodoscope array covering the tapered exit window (right) as foreseen for the Cherekov detectors of both polarimeters.

Upstream Polarimeter: Issues

- Can the chicane host other instrumentation?
- laser wire emmittance diagnostics?
- MPS collimator?

The plan is to separate them.

CLIC Upstream Polarimeter

Requirements: $\delta P / P=0.25 \%$

Suitable locations

alignment exists at two locations:

$$
\begin{gathered}
\mathrm{s}=742 \mathrm{~m} \\
(\mathrm{~s}=1555 \mathrm{~m})
\end{gathered}
$$

but only the first one qualifies for polarimetry
(upstream of energy collimation and sufficient free space for laser beam crossing)

$-605.132 \mu \mathrm{rad} \quad(\mathrm{s}=742 \mathrm{~m})$
$-601.351 \mu \mathrm{rad} \quad(\mathrm{s}=2796 \mathrm{~m})$
aligned within $3.8 \mu \mathrm{rad}$
Laser IP

CLIC Polarimeter

Orbit angle tolerances at Compton IP and IR due to spin precession considerations

$$
\begin{aligned}
\theta_{\text {spin }} & =\gamma \frac{g-2}{2} \cdot \theta_{b e n d}=\frac{E(G e V)}{0.44065} \cdot \theta_{b e n d} \\
& =3404.06 \cdot \theta_{b e n d} \text { at } 1.5 T e V
\end{aligned}
$$

Change in spin direction for various bend angles and the projection Of the longitudinal polarization. Electron beam energy is 1.5 TeV .

Change in Bend Angle	Change in Spin Direction	Longitudinal Polarization Projection
$100 \mu \mathrm{rad}$	$340.4 \mathrm{mrad}(19.5$ degrees)	94.26%
$50 \mu \mathrm{rad}$	$170.2 \mathrm{mrad}(9.75$ degrees)	98.55%
$25 \mu \mathrm{rad}$	$85.1 \mathrm{mrad}(4.87$ degrees)	99.64%
$13 \mu \mathrm{rad}$	45 mrad	99.9%

For $\delta P / P=0.1 \%$ implies angle at Compton IP and IR is aligned to better than $13 \mu \mathrm{rad}$.
Polarimeter needs to be before energy collimator to clean up Compton electrons.

CLIC Upstream Polarimeter

BDS detail behind $\mathrm{s}=742 \mathrm{~m}$

Laser IP at $\mathrm{s}=742 \mathrm{~m}$
Compton electron detector at $\mathrm{s}=907 \mathrm{~m}$
(behind 12 dipoles, as shown, or behind a lesser number of dipoles, but with reduced performance)

CLIC Upstream Polarimeter

electron detector hodoscope

- Design similar to gas Cerenkov employed in SLD Compton polarimeter
- $\mathrm{C}_{4} \mathrm{~F}_{10}$ gas ($\sim 10 \mathrm{MeV}$ threshold)
- detector will be immune against low-energy and diffuse background (synchr. rad.)
- could use ~ 25 channels, 10 mm wide each, to cover a large fraction of the spectrum from the Compton edge to beyond the asymmetry crossing point
- assume minimum distance of 20 mm from the beam axis
- Compton photon detection is an additional option, but will not be considered here

Downstream extraction line Polarimeter

Goal for Polarimeter Accuracy is $<0.25 \%$

Optical β functions and vertical momentum dispersion Dy in the 14 mrad extraction line from IP to the dump, shown for the 250 GeV nominal disrupted beam.

Schematic of the ILC extraction line diagnostics for the energy spectrometer and the Compton polarimeter.

No scheme for downstream CLIC polarimeter at luminosity.

Preliminary Spin Tracking: See following talk by Moritz Beckmann for details and explanations.

Lost Beam:
The dipole section begins at $\mathrm{z}=-1200 \mathrm{~m}$; the 'steps' at roughly -1500 m and -1300 m are collimators absorbing some particles from the beam. As the polarization is calculated from non-absorbed particles, absorption can change the polarization. The changes in polarization in the plot do not exceed two times the calculated standard deviations, so they might be just statistical effects (to be investigated).

Conclusion: There is a need for position and angle measurements at the upstream and downstream Compton IP as well as at the $e^{+} e^{-}$IP. Active feedback needs to maintain the position and beam orbit angle to with tolerance (At CLIC Δ orbit angle < $13 \mu \mathrm{rad}$ and Δ position $<25 \mu \mathrm{~m}$. Tolerance relaxed at ILC.).

Compton Polarimetry Overview

- The physics of the Compton scattering process is well understood in QED, with radiative corrections less than 0.1\%
- Detector backgrounds are easy to measure and correct for by using laser off pulses;
- Polarimetry data can be taken simultaneously with physics data;
- The Compton scattering rate is high and small statistical errors can be achieved in a short amount of time (sub-1\% precision in one minute is feasible);
- The laser helicity can be selected on a pulse-by-pulse basis;
- The laser polarization is readily determined with 0.1% accuracy.
- Extrapolation from upstream and downstream polarimeters to IR (Orbit differences and lost beam)

Expected Polarimeter Systematic Errors

Uncertainty	$\delta P / P$
Detector Analyzing Power	0.2%
Detector Linearity	0.1%
Laser Polarization	0.1%
Electronic Noise and Background Subtraction	0.05%
TOTAL	0.25%

Orbit difference between IR and Compton IPs < $50 \mu \mathrm{~m}$ at ILC and $13 \mu \mathrm{~m}$ at CLIC $_{17}$ for $\delta P / P=0.1 \%$

Measurement of the beam polarization using the $\mathrm{W}^{+} \mathrm{W}^{-}$production [1]

Ivan Marchesini ${ }^{1}$
Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany

Figure 2: The W invariant mass measured from the hadronic decay (left) and from the leptonic decay (right).

The Blondel scheme

$\left|P_{e \pm}\right|=\sqrt{\frac{\left(\sigma_{-+}+\sigma_{+-}-\sigma_{--}-\sigma_{++}\right)\left(\pm \sigma_{-+} \mp \sigma_{+-}+\sigma_{--}-\sigma_{++}\right)}{\left(\sigma_{-+}+\sigma_{+-}+\sigma_{--}+\sigma_{++}\right)\left(\pm \sigma_{-+} \mp \sigma_{+-}-\sigma_{--}+\sigma_{++}\right)}}$,
With $860 \mathrm{fb}-1$ of luminosity, the error on $\mathrm{P}_{e^{-}} \sim 0.1 \%$ and the error on $\mathrm{P}_{e^{+}} \sim 0.2 \%$.

Conclusions

Upstream Polarimeter

- Decision to have a Dedicated Chicane has been reached by ILC management.
- Energy collimator and laser wire system will be moved upstream of polarimeter chicane

Downstream Polarimeter

-The extraction line with six magnets improves the acceptance of the Compton scattered electrons. This allows detection over a larger part of the Compton electron energy spectra. The backscattered electrons are further away from the beam pipe by $\sim 10 \mathrm{~cm}$.

- No scheme for CLIC downstream polarimeter at highest energy and luminosity.

Orbit angle at Compton IPs and IP

- Orbit through Compton IP and $e^{+} e^{-}$IP needs active feedback to maintain orbit angle to 50 urad for ILC
$13 \mu \mathrm{rad}$ for CLIC

Extra Slides

Reference Design Report Damping Ring and Spin Rotation Systems

Requirements:
-Rotate spin to the vertical before damping ring so polarization is not destroyed during damping.

- Rotate spin after the damping ring to have the desired polarization at the $e^{+} e^{-} I P, e . g$. longitudinal polarization at IP. To avoids spin diffusion depolarization effects locate RTL spin rotation system after transport to beginning of main linac.

Spin rotation is done with a combination of spin rotation solenoids and spin precession in dipole bends

Proposal to rotate spin direction to the vertical near polarized electron source

Drive Laser

Wien filter spin manipulator
The magnet is not shown in the cutaway view
ILC source may run above 200 keV to reduce space charge effects.

$$
\mathrm{E}=200 \mathrm{keV} \text { has } \mathrm{B} \mathrm{dl} \sim 3600 \text { Gauss } \mathrm{cm} \text { and } \mathrm{V}=+/-24,253 \text { volts }
$$

Spin Rotation for positrons directly following Pre-accelerator when beam

energy is 400 MeV

Proposed Positron Spin Rotation at 400 MeV

Spin Direction

4. Longitudinal

Concerns:
Energy Spread at 400 MeV may be as large as $+/-25 \mathrm{MeV}$

- Depolarization: only 0.52\%
- Positron beam loss in 99.146 deg bends and parallel spin rotation lines needs study

Energy

Spin Rotation Angle

Conclusions on Spin Rotation Before Damping Ring

The costs and performance requirements for the spin rotation systems before the damping ring will be less demanding at lower energy than at the damping ring energy of 5 GeV .

Positron Beam Spin Rotation and Fast Helicity Selection

- Copper-wound solenoids for the spin rotation solenoids 2.2 meters long with a bore of 2" can be used for the positron beam at 400 MeV .
- The angle the beam leaves the spin rotation system is required to be in the plane of the damping ring. The tolerance on the angle alignments is ~ 3 degrees resulting in a depolarization of 0.1%.
- A system to randomly select the helicity of the positrons at the e+e-IR is given. Such a scheme is important to minimize systematic errors in the measurement of polarization asymmetries. At 400 MeV the parallel beam lines and kicker magnets will be much simpler than at 5 GeV .

Electron Beam Spin Rotation

Rotate the spin vector to the vertical at very low energy ($\sim 150 \mathrm{keV}$) for the electrons near the polarized gun using a Wien filter.
-The spin rotations systems presented here are conceptual designs. A more detailed optics design, including simulating performance and overall operation, will be needed.

Polarization at CLIC

Longitudinal depolarization due to energy spread in reverse bend at 9 GeV

$$
P=\cos \left(\theta_{\text {spin }}\right)=\cos \left(\gamma \frac{g-2}{2} \cdot \theta_{\text {bend }}\right)=\cos \left(\frac{E(G e V)}{0.44065} \cdot \theta_{\text {bend }}\right)
$$

dE / E at 9 GeV	Mean longitudinal or transverse horizontal polarization after 90 deg bend (note: vertical spin component will not be depolarized)
0.25%	99.6%
0.5%	98.6%
1.0%	94.0%
1.3%	90.8%

- Spin diffusion in the 90 degree turnaround at 9 GeV due to an energy spread of less than 0.5% will not be a problem.
- The energy spread at 9 GeV is given as 1.3% in the CLIC-Note-764. Such a large energy spread will destroy the polarization.
-Conclusion: CLIC will have to do the spin rotation after the reverse bend unless energy spread at 9 GeV is less than 0.5%

Laser Optics Bench
Continuum Powerlite 8000

1%
measurement every minute 3 bunches per train

1\% measurement every hour 180 bunches per train

1\%
measurement every day
all bunches of train

Will investigate availability of a mode-locked laser with ~ 35 picosec wide pulse width.
Recent new product from Quantel Pizzicato B

$$
\begin{aligned}
& -30 \mathrm{~mJ} \text { pulse energy at } 532 \mathrm{~nm}(2.33 \mathrm{eV}) \\
& -20 \mathrm{~Hz} \text { operation } \\
& -35 \text { picoseconds }
\end{aligned}
$$

Laser Room on surface ($10 \mathrm{~m} \times 10 \mathrm{~m} \times 3 \mathrm{~m}$)

Gowning
Room

Downstream Polarimeter

Plan view: Config. of surface laser room, penetration shaft and extraction line tunnel

Laser Transport

