Simulations of the Polarized Positron Source with PPS-Sim

A. Ushakov, A. Schälicke, S. Riemann

DESY, Zeuthen

IWLC2010, International Workshop on Linear Colliders

CERN, 20 October 2010

<u>Motivation</u>: **Development of reliable tool for positron source** simulations

- Status of PPS-Sim development
- Impact of electron beam energy for undulator-based source with AMD on:
 - positron yield
 - energy deposited in target
 - polarization
- Yield and polarization of source at 250 GeV and photon collimator
- Summary

PPS-Sim: Polarized Positron Source Simulation PPS-Sim is Geant4-based application

- Electromagnetic and hadronic shower development in target
- Single particle tracking in electro-magnetic fields
- Spin tracking in electro-magnetic fields
- Powerful geometry package
- Visualisation of geometry model, particle trajectories and energy deposition
- Qt4-based Graphical User Interface (GUI)
- ROOT: analysis of results and input data (e.g. energy spectrum of primary beam)

Positron of Source Components

Primary Beam

- Undulator photons
- Electrons (conventional source)
- Input file (Compton photons, channeling radiation)

Target

- Solid wheel (Ti- or W-alloy)
- Liquid Lead

Optical Matching Device (OMD) and Accelerating Cavity (RF)

- Pulsed flux concentrator (AMD)
- Lithium lens
- Quarter-wave transformer (QWT)
- 1.3 GHz cavity embedded into solenoid
- Acceptance of Damping Ring

Photon Collimator (optionally)

PPS-Sim: Source Configuration

Source can be configured via macro-commands (Geant4) or dialog "Preferences"

- Choice of source components
- Dimensions & relative positions
- Beam, field parameters

• ...

PPS-Sim: Main Window

					G	4UI Sessi	ion	1	
File	Run	Gun	Visualizatio	n Tests	Preferences	Analysis	: 1	Help	
N N N N N N N N N N N N N N N N N N N	File Run Gun Visualization Tests Preferences Analysis Heip Mean E_Ph generated in Undul : 10.700067 MeV Mean E_Ph incident on Target: 15.138377 MeV Image: 15.138377 MeV Image: 15.138377 MeV Mean E_Ph incident on Target: 15.138377 MeV Image: 15.138377 MeV Image: 15.138377 MeV Image: 15.138377 MeV Mean E_Ph incident on Target: 15.138377 MeV Image: 15.138377 MeV Image: 15.138377 MeV Image: 15.138377 MeV Mean e+ polarization (after target): 0.35364171 +- 0.012506532 N_e+ (in DR acceptance): 1132 Image: 15.138724 MeV +- 0.024513812 Image: 15.138724 MeV +- 10.079811 keV mean Energy in ADD: 501 25131 keV +- 7.7851661 keV Image: 17.7851661 keV Image: 18.81094 keV +- 6.2303192 keV Image: 18.81094 keV +- 6.2303192 keV Image: 18.81094 keV +- 6.2303192 keV Image: 18.81094 keV +- 10.77544896 keV Image: 18.81094 keV +- 10.7754480 keV Image: 18.81094 keV +- 10.7754480 keV Image: 18.81094 keV +- 10.7754480 keV Image: 18.81094								
						clea	ar		
_									
/r se	un/bea	mOn	100000						

Photon Energy Distribution and Polarization

 $\frac{\text{Helical Undulator:}}{K = 0.92, \text{ Period} = 11.5 \text{ mm}}$ Field on axis = 0.86 T, Aperture = 5.85 mm

Flux Concentrator (AMD) Model

$$B_0(z) = \frac{B_{ini}}{1+gz}$$

Initial B-field, T	6
End B-field, T	0.5
Taper parameter g , m ⁻¹	30

A. Ushakov (DESY, Zeuthen)

IWLC2010, 20 October 2010

$$B_{\theta}(r) = \frac{\mu_0 lr}{2\pi a^2}$$

A. Mikhailichenko, Cornell University Report (2010) CBN 10-3

Parameters of 1st Coil

B-field, T	1 ÷ 3.5
Length, mm	20
Inner Radius, mm	46

More realistic field distribution has been calculated and will be implemented in PPS-Sim

Performance of AMD, Li-Lens and QWT (RDR Design)

- Undulator at 150 GeV, K = 0.92, $\lambda = 11.5$ mm
- 0.4 X₀ Ti6Al4V Target

	AMD (6 T \mapsto 0.5 T)	Li-Lens	QWT (2.5 T)	
Yield (after Target), e ⁺ /ph	0.0226			
"Captured" Yield, e ⁺ /ph	8.1 · 10 ⁻³	$6.4 \cdot 10^{-3}$	$5.2 \cdot 10^{-3}$	
Capture Efficiency, %	35.8	28.3	23.1	
Polarization, %	32.3	34.7	34.2	

Comparison with other Simulation Programs (EGS+Elegant)

Capture Efficiency [%]

OMD	ANL ¹	PPS-Sim
AMD, immersed target	~ 30	35.8
Li-Lens (50 MV/m)	\sim 29	31.2
QWT (1 T, 2 cm)	~ 21	18.5
0.5 T Solenoid	~ 10	10.7

¹ Wanming Liu, Wei Gai et al., Positron Source Collaborating Meeting, Argonne, IL, USA, Sept. 17-19, 2007

A. Ushakov (DESY, Zeuthen)

Impact of Electron Beam Energy

RDR Undulator; Ti-target, 0.4 X_0 ; AMD 6T to 0.5 T, taper parameter = 60 m⁻¹; E_{max} = 28.8 MeV/m, DR acceptance: 1 % energy spread, $\epsilon_x + \epsilon_y < 0.09$ rad m

Undulator length required for 1.5 captured e⁺ per e⁻

Energy Deposition vs Electron Beam Energy

- $2 \cdot 10^{10} e^{-}$ /bunch
- 1.5 e⁺/e⁻

Peak Energy Deposition per Bunch

1312 bunches/train, 1.5 MHz

Peak Energy Deposition per Train

• 100 m/s rotation speed

Energy Deposition in Target: RDR Design and SB2009

PEDD: 0.47 J/g/bunch (1.5 e⁺/e⁻) PEDD: 0.74 J/g/bunch (2 e⁺/e⁻)

PEDD - Peak Energy Deposition Density

IWLC2010, 20 October 2010

Energy Deposition in Rotating Target

Rotation Speed: 100 m/s Target Diameter: 1 m 1900 RPM

RDR: 2625 bunches/train SB2009: 1312 bunches/train

Energy Deposition (per Train)

To increase beam polarization a photon collimator can be used

Photon Collimator for Positron Source at 250 GeV: Yield and Polarization vs Collimator Aperture Size

Collimator with 2 mm aperture radius:

- increases polarization to ${\approx}30\%$
- results in \approx 12% yield reduction

Undulator Length and Power. Energy Deposited in Collimator

Summary and Outlook

- Geant4-based tool PPS-Sim for polarized positron source simulations is being developed
- A variety of e⁺ source options (different primary beams, targets, OMD's) are included
- Impact of e⁻ beam energy on source efficiency, e⁺ polarization and heat load in target has been analyzed
- Photon collimator with 2 mm (1.5 mm) aperture radius increases polarization up to 30% (40%) without significant reduction of yield for source at 250 GeV

Plans:

• Beam tracking up to DR (including spin rotator) in PPS-Sim + Bmad

PPS-Sim is open-source code and available for download: http://pps-sim.desy.de