
10/20/10 IWLC 2010, Genève Slide1 /27

Strong field physics in beam-beam 
interactions at a linear colliders

Bound Interaction 
(Furry) Picture

Tony Hartin, IWLC2010, 20 October 2010
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There is depolarization (spin flip) due to the 
QED process of beamsstrahlung, given by the 
Sokolov-Ternov equation

Generally, the simulation programs ignore the 
dependence on the radiation angle, and smear 
it withing the radiation cone

d S⃗
dt

= −
e

m γ [(γa+1) B⃗T+(γa+1) B⃗L−γ/c2(a+ 1
γ+1 ) v⃗ x E⃗ ] x S⃗

The fermion spin can also precess in the bunch 
fields. Equation of motion of the spin given by 
the T-BMT equation

  At the IP, the anomalous magnetic 
moment has to be calculated using exact 
solutions in the strong bunch fields – in 
the Bound Interaction (Furry) Picture

dW
dωf

=
αm

√3π γ2∫z

∞
K 5/3 (x)dx+

y2

1−y
K2/3 (z) , z∝ω f (1−cosθf )

Motivation I – IP depolarisation
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There is depolarization (spin flip) due to the 
QED process of beamsstrahlung, given by the 
Sokolov-Ternov equation

Generally, the simulation programs ignore the 
dependence on the radiation angle, and smear 
it withing the radiation cone

Classical spin 
precession in 
inhomogeneous 
external fields:         
 T-BMT equation.

Depol sims with CLIC parameters (I Bailey)
change in polarization vector magnitude

CLIC-G ILC (80/30%)
T-BMT 0.10% 0.17% 0.14%

3.40% 0.05% 0.03%
incoherent 0.06% 0.00% 0.00%
coherent 1.30% 0.00% 0.00%
total 4.80% 0.22% 0.17%

ILC nom

Beamstr.

Stochastic spin 
diffusion from 
photon emission: 
Sokolov-Ternov 
effect, etc.

d S
dt

= −
e

m [ a1 BT a1 BL−/c 2a 1
1 v x E ] xS

The fermion spin can also precess in the bunch 
fields. Equation of motion of the spin given by 
the T-BMT equation

  At the IP, the anomalous magnetic 
moment has to be calculated using exact 
solutions in the strong bunch fields – in 
the Bound Interaction (Furry) Picture

dW
df

=
m

32∫z

∞
K 5/ 3x dx

y2

1− y
K2 /3 z  , z∝f 1−cos f 

Motivation I – IP depolarisation
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Motivation II – Vacuum Polarisation

● First observed at SLAC E144 in the late 1990’s. 46 Gev e- beam collides 
with laser 14x1019 W/cm

● Linear Collider: field associated with charge bunches at the point of 
collision are             (ILC SB2009) and          (CLIC) leads to coherent 
pair production (2x107 per bunch crossing at CLIC) 

Within              a field strong enough to separate a virtual pair by a compton 
wavelength. Threshold field is the Schwinger critical field      (13x1016 V/cm) 

electron

positron

Electric 
Field

 t=
ℏ
m
c2

Ec

0.13 Ec 2.6 Ec
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Calculation methodologies

● fermions    bend in the field of oncoming bunch and radiate a photon

● Method of calculation specified by energy ratio         and field ratio=
E
Ec

 f

≈
f


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Calculation methodologies

● fermions    bend in the field of oncoming bunch and radiate a photon

● Method of calculation specified by energy ratio         and field ratio

●                Classical electrodynamics . Radiation within cone

●                Quasi-classical method of Baier-Katkov. Quantum interaction 
between fermion and photon but fermion dynamical variables commute

●                 1st Born approximation. Treat bunch field as contributing a 
single photon to the interaction (a Compton interaction

●                 Semi-classical method. Exact interaction with a classical 
potential in the Bound Interaction Picture (BIP)

=
E
Ec

 f

≈
f



≪1,≪1 =/m

≪1

≪1

any  ,
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Bound Interaction Picture

● Motivated originally by the “Dyson Dilemma” - nonzero radius of 
convergence in the QED perturbation series. The effect of the 
external field is treated 'exactly'

LBIP = − 1
4
Fμ νFμ ν+ψ̄V (i γ

μ∂μ+eAe−m)ψV+e ψ̄V A ψV

LBDLM LI
The External classical potential
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Bound Interaction Picture

● Motivated originally by the “Dyson Dilemma” - nonzero radius of 
convergence in the QED perturbation series. The effect of the 
external field is treated 'exactly'

● Exact solution of the Bound Dirac equation for plane wave 
electromagnetic fields, [Volkov 1935, Bagrov, Gitman et al 1970s] 

Spin dependent part including a 
magnetic moment interaction

An additional phase factor

The usual free fermion part

LBIP = − 1
4
Fμ νFμ ν+ψ̄V (i γ

μ∂μ+eAe−m)ψV+e ψ̄V A ψV

LBDLM LI
The External classical potential
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Strong field physics processes I

● Beamstrahlung
● Coherent pair production
● Trident production
● Photon absorption
● Photon splitting

New odd-vertex processes

● AMM in external field
● Resonant Compton scattering
● Self energies in external field
● Vertex Correction in ext. field

Modified processes

- Partially simulated
- Spin effects incomplete

- Some Analytic forms       
   available
- Not simulated

Implemented, decreases 
as field intensity increases

Not yet implemented
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Strong field physics processes II
Resonant Compton Scattering

1
2(k i pi)−2s(k pi)

≈
1

4 ϵi(ωi−sω)
instead of

1
2(k i pi)

≈
1

4ωiϵi

∫ds δ( pi+k i+sk−p f−k f )

● Modified conservation of momentum

● Mass shell condition for the propagator modified
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Strong field physics processes II
Resonant Compton Scattering

1 Vertex Photon Absorption

1
2(k i pi)−2s(k pi)

≈
1

4 ϵi(ωi−sω)
instead of

1
2(k i pi)

≈
1

4ωiϵi

∫ds δ( pi+k i+sk−p f−k f )

● In Furry Picture all 1 vertex processes are allowed
● Large flux of oncoming real photons                             

   (2.2 per electron for 3 TeV CLIC)
● Related to beamstrahlung via crossing symmetry
● Need to analyse w.r.t. kinematics

● Modified conservation of momentum

● Mass shell condition for the propagator modified
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Beamstrahlung radiation angle
● The beamstrahlung (Sokolov-Ternov) equation is written in 

terms of McDonald’s functions

 ,u ∝ f 1−cosf 

● Radiation in the forward direction as expected
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Beamstrahlung radiation angle
● The beamstrahlung (Sokolov-Ternov) equation is written in 

terms of McDonald’s functions

 ,u ∝ f 1−cosf 

● Radiation in the forward direction as expected

● dW/du divergent for vanishing u i.e. for IR and 
radiation in the backwards direction!
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Beamstrahlung transition probability
● The beamstrahlung (Sokolov-Ternov) equation is written in 

terms of McDonald’s functions

 ,u ∝ f 1−cosf 

● Radiation in the forward direction as expected

● dW/du divergent for vanishing u i.e. for IR and 
radiation in the backwards direction!

● Beamstrahlung simulated in CAIN and Guineapig, 
however....

● No rigorous treatment of radiation angle – either 
no radiation angle or smeared randomly within 
expected radiation cone 

● Divergences avoided by Monte Carlo
● Need to address this for precision tracking
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State of the Loops - BIP Radiative 
corrections

● Electron Self Energy (Ritus 1971)

– Spin dependent part of helicity amplitude 
gives AMM in external field

Self Energy

Beamstrahlung 

● Function Φ( )z  (Airy function) is real part of
● Analytic properties largely depend on the functions of z
● Needs dimensional Regularization and cancellation of IR divergence

f (z)=∫0

∞

exp (izt+i t3/3)dt
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IR divergence removal
via the Vertex Function

● Kf is a virtual photon

● The vertex function is constrained to have 
2 terms, the divergent vertex correction F1 
and the Anomalous Magnetic Moment, F2 

 = ie  F1
i  k f 

2m
F2

Correction to the vertex
Correction to the 
magnetic moment

kf

kf
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IR divergence removal
via the Vertex Function

● Kf is a virtual photon

● The vertex function is constrained to have 
2 terms, the divergent vertex correction F1 
and the Anomalous Magnetic Moment, F2 

 = ie  F1
i  k f 

2m
F2

Correction to the vertex
Correction to the 
magnetic moment

● Regularise F1 to isolate the UV and IR divergences

● IR divergence is isolated in a logarithm containing a cutoff and 
cancelled with the IR divergence from soft bremstrahlung

●

kf

kf
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k
1 kf

Vertex function in external Field I

p'

k
2
=k

1
+k

f

p
 = ie F1

e
i k f 

2m
F2

e

kf

p-k
1

● Fermion lines replaced with exact external 
field (Volkov) solutions: 256 terms in the 
numerator, different tensor structure 

● External field photons contribute at each 
vertex: 3 extra integrations (+ 3 Feynman 
parameters + 3 propagators)

● In the collinear limit, tensor structure is 
familiar
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k
1 kf

Vertex function in external Field I

p'

k
2
=k

1
+k

f

p

Analytic simplification:
• Need to deal with the extra Volkov phases
• Find analytic solutions to integrals of functions of Airy functions

 = ie F1
e

i k f 

2m
F2

e

kf

p-k
1

∫ dsdl d4 k1

Ai(s) Ai(s−l)

[−k1
2+x1 s+x2+iϵ]3

exp (i x3 l) → f (z)

● Fermion lines replaced with exact external 
field (Volkov) solutions: 256 terms in the 
numerator, different tensor structure 

● External field photons contribute at each 
vertex: 3 extra integrations (+ 3 Feynman 
parameters + 3 propagators)

● In the collinear limit, tensor structure is 
familiar

Same f(z) appearing 
in self energy
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k
1 kf

Vertex function in external field II

p'

k
2
=k

1
+k

f

p

Fe
2 is the same as the spin-dependent part of the 

Self Energy in the external field Ritus(1971), 
Baier(1975) – Good Crosscheck!

kf

p-k
1

F2
e ∝∫ z du

(1+u)3
f (z ) , z=(u /2Υ)2/3

F1
e ∝∫ du

(1+u)3 [2u∫ f (z)dz+z (4 1+u
u

−
5
3
u ) f (z)− u

3π ]
●  Fe

1 has no regularisation yet – Ritus seems to suggest that there 
remains a UV divergence with respect to the interaction with the vacuum 
therefore look to isolate an external field-free part

●  Need to implement numerically to see what the correction to the 
beamstrahlung is
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Simulation status vis a vis spin tracking

Feature CAIN 2.35 Guinea-Pig Guinea-Pig++

Spin precession  Structure 
present



Spin Flip  

Radiation angle none Smeared within γ cone

Pair backgrounds Some/all spin 
components none none

Radiative 
corrections none none none

Higher orders none none none

Highly Desireable: to implement fully in one code and 
preferably two for cross-check

SpinToolsWS DESY Hamburg 9-11 Nov
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Summary
● Future linear collider provides the opportunity to do precision spin 

physics. Polarized beams are required and their polarization state 
measured precisely

● Beam-beam processes (beamstrahlung and spin precession) result in 
uncertainties in the polarisation state at the IP. 
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Summary
● Future linear collider provides the opportunity to do precision spin 

physics. Polarized beams are required and their polarization state 
measured precisely

● Beam-beam processes (beamstrahlung and spin precession) result in 
uncertainties in the polarisation state at the IP. 

● Radiative corrections can be applied to the main beam-beam processes 
via the Self Energy and Vertex Correction in an external field

● The calculation is performed in the Bound Interaction (Furry) Picture 
with exact solutions of the Dirac in the classical bunch field
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Summary
● Future linear collider provides the opportunity to do precision spin 

physics. Polarized beams are required and their polarization state 
measured precisely

● Beam-beam processes (beamstrahlung and spin precession) result in 
uncertainties in the polarisation state at the IP. 

● Radiative corrections can be applied to the main beam-beam processes 
via the Self Energy and Vertex Correction in an external field

● The calculation is performed in the Bound Interaction (Furry) Picture 
with exact solutions of the Dirac in the classical bunch field

● In the IR limit the tensor structure of the Furry Picture Vertex 
Correction is the same as the “normal” version

● The analytic form of the two form factors was obtained. The AMM 
term is the same as that in the literature obtained by other methods
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Summary
● Future linear collider provides the opportunity to do precision spin 

physics. Polarized beams are required and their polarization state 
measured precisely

● Beam-beam processes (beamstrahlung and spin precession) result in 
uncertainties in the polarisation state at the IP. 

● Radiative corrections can be applied to the main beam-beam processes 
via the Self Energy and Vertex Correction in an external field

● The calculation is performed in the Bound Interaction (Furry) Picture 
with exact solutions of the Dirac in the classical bunch field

● In the IR limit the tensor structure of the Furry Picture Vertex 
Correction is the same as the “normal” version

● The analytic form of the two form factors was obtained. The AMM 
term is the same as that in the literature obtained by other methods

● Regularisation/Renormalisation still to be perfomed
● Numerical simulations to follow
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Strong fields in crystals (NA63)
● fields are of the same order and type of 

those in bunch-bunch collisions

● Can also use polarized beams to study 
spin precession and flips



10/20/10 IWLC 2010, Genève Slide27 /27

Other experimental tests
● Mass shift cause by averaged motion in the external field

● Surface of magnetars

● Somnoluminescence

● XFEL – strong laser fields

● See article by McDonald
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