## Spin Tracking Studies for Polarimetry at the ILC

Moritz Beckmann

DESY - FLC<br>visiting SLAC May-August 2010

IWLC, Geneva
October 20, 2010

## Introduction

- Polarization is planned to be measured at the ILC with $0.25 \%$ uncertainty in the beam delivery system (BDS)
- Compton polarimeters, beam energy $45-500 \mathrm{GeV}$
- Longterm scale calibration of luminosity-averaged polarization at IP to $0.1 \%$ using $\mathrm{e}^{+} \mathrm{e}^{-}$collision data

- Spin diffusion / depolarization must be understood to $0.1 \%$ (further) spin tracking studies required


## Simulation

## Particle/spin tracking BMAD <br> mostly set up

## Data analysis ROOT

 set up

## Beam-beam collision Guinea-Pig/CAIN yet to be included

## Polarimeter simulation <br> LCPoIMC

interface under construction

- This study is performed for the ILC
- Could be used for other projects (e.g. CLIC) as well, if fed with corresponding lattice / parameters


## Spin tracking

- Spin propagation in electromagnetic fields is described by T-BMT equation

$$
\frac{d}{d t} \vec{s}=\vec{\Omega}(\vec{E}(\vec{r}, t), \vec{B}(\vec{r}, t), \vec{p}, m, a) \times \vec{s}
$$

- Rough approximation $\left(\vec{E}=0, \vec{B}_{\|}=0\right)$ : Spin precession $\propto$ orbit bending in magnetic field:

$$
\begin{aligned}
\theta_{\text {spin }} & =a \gamma \cdot \theta_{\text {orbit }} \\
& \approx 567 \cdot \theta_{\text {orbit }} \quad \text { for electrons at } 250 \mathrm{GeV}
\end{aligned}
$$

a: anomalous gyro-magnetic moment, a. k. a. $\frac{g-2}{2}$
$\gamma=\frac{E}{m}$

## Idealized Lattice

- Using latest available lattice (ILC2007b), beam parameters from Reference Design Report (2007)
- 10000 particles, spins assumed $\propto \vec{e}_{z}$ at the end of the linac
- Perfect magnet alignment, no collision effects
- Plot: longitudinal polarization along BDS


UP/DP: positions of up-/downstream polarimeters

- Dips due to dipoles: polarization vector rotates, but no significant depolarization


## Idealized Lattice (cont'd)




UP/DP: positions of up-/downstream polarimeters
Caution: scaling of $x$-axes varies

## Idealized Lattice (Zoom)

- Spin fan-out due to lateral beam size in quadrupoles
- Red lines: $\pm 0.1 \%$ (must know changes to this precision)



## Special Issues in the Interaction Region

- Important elements are not yet included in lattice
- Detector magnets
- Crab cavities
(give the bunch a transverse kick to compensate for beamline crossing angle)
- Additional cavity or achromaticity for travelling focus scheme to achieve higher luminosity
- Effects of beam-beam collision have to be investigated
- Disruption of beam ( $\sim 10^{-4} \mathrm{rad}$ )
- Spin flips due to emission of beamstrahlung


## Alignment / Ground Motion

- Magnet misalignments between polarimeters contribute to incomparability of measurements
- Need to investigate effect of static misalignments and ground motion:
- Polarization vector rotation $\left(\theta_{\text {spin }}=a \gamma \cdot \theta_{\text {orbit }}\right)$
- Spin fan-out due to poor focussing


## Alignment / Ground Motion

- Magnet misalignments between polarimeters contribute to incomparability of measurements
- Need to investigate effect of static misalignments and ground motion:
- Polarization vector rotation $\left(\theta_{\text {spin }}=a \gamma \cdot \theta_{\text {orbit }}\right)$
- Spin fan-out due to poor focussing
- Compensation by feed-back correctors?
$\rightarrow$ Requirements on alignment and BPM precision
Need for additional correctors?


## Static Misalignments

- Initial sample, each element randomly misaligned (Gaussian-distributed random numbers, $\sigma_{x, y}=2 \mu \mathrm{~m}$ )
- $\sigma_{x, y}=2 \mathrm{~nm}$ in final focus region (0-50m in front of IP)
- Plots shows three exemplary samples



## Static Misalignments

- Initial sample, each element randomly misaligned (Gaussian-distributed random numbers, $\sigma_{x, y}=2 \mu \mathrm{~m}$ )
- $\sigma_{x, y}=2 \mathrm{~nm}$ in final focus region (0-50m in front of IP)
- Plots shows three exemplary samples
- No feed-back correctors implemented yet
- Dashed: after rotation of the momentum vectors at the IP such that $\left\langle p_{t}\right\rangle=0$; spins rotated accordingly (a $)$
- Orbit correction at IP: $\frac{\Delta \mathrm{P}_{\mathrm{z}}}{\mathrm{P}_{\mathrm{z}}}(\mathrm{IP}, \mathrm{DP})<\mathbf{0 . 1 \%}$



## Static Misalignments (cont'd)

- Collimators in BDS absorb up to 1000 particles due to missing orbit correction (will be moved in front of upstream polarimeter according to SB-2009 proposal)
- Observed changes in polarization consistent with statistical effects ( $\leq 2 \sigma$ )
- $\Delta P_{z}$ of corrected beams $=\Delta P_{z}$ from collimators $\Rightarrow$ Orbit correction at IP: $\frac{\Delta \mathrm{P}_{\mathrm{z}}}{\mathrm{P}_{\mathrm{z}}}(\mathrm{UP}, \mathrm{IP})<0.1 \%$




## Static Misalignments: IP



- Orbit and helicity vector rotation are strongly correlated
- Provisional feed-back (lower plot) recovers longitudinal polarization
- Assumption: Spins $\propto \vec{e}_{z}$ at the end of the linac


## Ground motion


A. Hartin, PST 2009

- Plot: IP beam y-position and helicity with ground motion model for "noisy" site without correction
- Nominal beam size $\sigma_{y}$ at IP: 5.7 nm


## Summary

- A spin tracking framework for high energy linear colliders has been set up
- First studies have been performed for the ILC, where an understanding of polarisation to the permille-level is required


## Summary

- A spin tracking framework for high energy linear colliders has been set up
- First studies have been performed for the ILC, where an understanding of polarisation to the permille-level is required
- Alignment in whole BDS is crucial, but causes mainly helicity vector rotation $\rightarrow$ reversible
- Provisional orbit correction at the IP $\Rightarrow$ same $P_{z}$ at polarimeters and IP w. r. t. tolerances
- Need to specify the polarization requirements on beam position monitors and alignment systems
$\rightarrow$ more investigations


## Outlook

- Include more details into the simulation
- Detector magnets
- Crab cavities
- Travelling focus scheme
- Collision effects
- Ground motion
- Feed-back systems in lattice
- Interface to polarimeter simulations
- Develop calibration strategies


## Thanks for your attention!

## Backup slides

## Static Misalignments: Upstream Polarimeter


$\theta_{\text {orbit }}$ : angle between reference orbit and actual particle orbit

- Effects from misalignments are small, though visible (distribution offset from zero)
- Depolarization $\sim 10^{-7}$


## Static Misalignments: Downstream Polarimeter




- Less correlation than at the IP, effect of extraction line quadrupoles?
- needs further investigation


## Effects of Energy spread

- Sample as in the beginning, no misalignments
- No difference due to energy spread visible



## Effects of Energy spread

- Sample as in the beginning, no misalignments
- No difference due to energy spread visible



## Detector magnets

- Detectors contain
- solenoid for tracking devices
- dipole (anti-DID) to compensate for (detector) effects of crossing angle



## Detector magnets

- Detectors contain
- solenoid for tracking devices
- dipole (anti-DID) to compensate for (detector) effects of crossing angle

- Additional correction kickers required to align beam at IP and behind detector
- Parameters (solenoid field etc.) vary for different detector concepts


## Detector magnets: Orbit Correction

Simple model of SiD, first-order orbit correction


- Mean x position $<0.03 \mathrm{~mm}$
- Plot for polarization not available due to technical problems


## Detector magnets: Polarization

- Technical problem: Spin tracking through kickers not implemented yet
- Tracked spins: do not include kickers and anti-DID
- Orbit angles: approximation $\theta_{\text {spin }}=a \gamma \cdot \theta_{\text {orbit }}$ not valid in and around solenoid $\left(\vec{B}_{\|} \gg \vec{B}_{\perp}\right)$

- Tracked spins: visible effect from solenoid expected

