(Recent) Higher-order corrections to Higgs Phenomenology at the ILC

Marcus Weber

MPI Munich

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

linear collider is precision machine

- Higgs mass $\Delta m_H = 50 \text{ MeV}$ (ILC), $\Delta m_H = 0.2 \text{ GeV}$ (LHC)
- cross sections $\sigma(HZ), \sigma(\nu\nu H)$: $\Delta\sigma = 2 10\%$ for $m_H = 120 160$ GeV.
- branching fractions and couplings $\Delta BR(bb, cc, \tau\tau, gg, WW) = 2 - 6\%$ for $m_H = 120 \text{ GeV}$ $\Delta g_{ttH} \approx 10\%$ for $m_H < 200 \text{ GeV}$
- \rightarrow need higher order corrections

Standard Model Higgs sector

1 Higgs doublet
$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \begin{pmatrix} \phi^+ \\ \frac{1}{\sqrt{2}}(v+H+i\chi) \end{pmatrix}$$

Lagrangian

$$egin{aligned} \mathcal{L}_{\mathsf{higgs}} &= (D_\mu \Phi)^\dagger (D^\mu \Phi) - V(\Phi) \ D_\mu \Phi &= (\partial_\mu + i g T^a G^a_\mu) \Phi \ V(\Phi) &= -\mu^2 \Phi^\dagger \Phi + rac{\lambda}{4} (\Phi^\dagger \Phi)^2 \ \mathcal{L}_{\mathsf{Yuk}} &= -\lambda_e ar{L} \Phi e_R - \lambda_d ar{Q} \Phi d_R - \lambda_u ar{Q} \Phi^* u_R \end{aligned}$$

- EW symmetry breaking: VEV v ≠ 0 Goldstone bosons φ⁺, χ: give mass to W⁺, Z
 1 physical Higgs state H, 1 parameter m_H
- Higgs couplings

$$g_{Hff} = m_f / v$$
 $g_{HVV} = 2m_V^2 / v$ $g_{HHVV} = 2m_V^2 / v^2$
 $g_{3H} = 3m_H^2 / v$ $g_{4H} = 3m_H^2 / v^2$

SM Higgs production

main production channels

- Higgsstrahlung low \sqrt{s} $e^+e^- \rightarrow HZ$
- Weak Boson Fusion high \sqrt{s} $e^+e^- \rightarrow \nu_e \bar{\nu}_e H$ $e^+e^- \rightarrow e^+e^- H$

couplings

- top Yukawa $e^+e^- \rightarrow t\bar{t}H$
- Higgs self coupling $e^+e^- \rightarrow ZHH$ $e^+e^- \rightarrow \nu_e \bar{\nu}_e HH$

SM Higgs production

status of higher order corrections

- ZH [Fleischer, Jegerlehner '83] [Kniehl '92] [Denner, Kublbeck, Mertig, Bohm '92]
- ννΗ [Belanger et al. '03] [Denner, Dittmaier, Roth, M.W. '03] [Jegerlehner, Tarasov '03]
- *e*⁺*e*⁻*H* [Boudjema et al. '04]
- tt
 tt
 H

 QCD [Dawson, Reina '99] [Dittmaier, Kraemer, Liao, Spira, Zerwas '98]
 EW [Denner, Dittmaier, Roth, M.W '03] [Belanger et al. '03]
 [You, Ma, Chen, Zhang, Sun, Hou '04]
- ZHH [Belanger et al. '03] [Chen, Hou, Ma, Sun, Zhang '04]
- ννΗΗ [Boudjema et al. '04]
- WWH [Song, Ma, Zhang, Guo, Wang '08]

typical size of EW corrections = O(5 - 10%)

SM Higgs decays

dominant decay channel

- $m_H < 140 \, {\rm GeV}$ $H \rightarrow b \bar{b}$
- $m_H > 140 \, \text{GeV}$ $H \rightarrow WW/ZZ \rightarrow 4f$
- $H \rightarrow \gamma \gamma$ channel BR = $\mathcal{O}(10^{-3})$, but exp. clean

1-loop exact

 $\mathcal{O}(lpha_{s})$ [Braaten and Leveille, '80] $\mathcal{O}(G_{F})$ [Kniehl, '92]

• higher orders in large m_t limit $\mathcal{O}(\alpha_s^2)$ [various '91-97] $\mathcal{O}(\alpha_s^3)$ [Chetyrkin and Steinhauser, '97]

 $\mathcal{O}(\alpha_s)$ [Cnetyrkin and Steinhauser, '97] $\mathcal{O}(\alpha_s G_F m_t^2)$ [Kniehl and Spira, '94] $\mathcal{O}(\alpha_s^2 G_F m_t^2)$ [Chetyrkin, Kniehl and Steinhauser, '97]

calculation of $\mathcal{O}(G_F^2 m_t^4)$ 2-loop corrections in large m_t limit [Butenschoen, Fugel, Kniehl '07]

• asymptotic expansion technique

• result
$$\frac{\Gamma(G_F^2 m_t^4)}{\Gamma_0} = +0.047\%$$

larger than known $\frac{\Gamma(\alpha_s G_F m_t^2)}{\Gamma_0} = -0.022\%$

PROPHECY4f MC generator

[Bredenstein, Denner, Dittmaier, M. W.]

- $\mathcal{O}(\alpha)$ and $\mathcal{O}(\alpha_s)$ to $H \to WW/ZZ \to 4f$
- complex mass scheme for W/Z all kinematic regions
- partial widths and distributions
- non-collinear-safe observables possible
- leading 2-loop from Higgs self interaction
- weighted events
- code now public <u>here</u>
- HDECAY update [Spira]
 - IBA to $H \rightarrow 4f$ decays Γ accurate within 1%

loop induced: W and top loops

- LO [Ellis, Galliard, Nanopoulos '76] [Vainshtain, Voloshin, Zakharov, Shifman '79]
- NLO QCD m_H < 2m_t [Zheng, Wu '90] [Djouadi, Spira, v.d.Bij, Zerwas '91] [Dawson,Kauffmann '93] including 3 loops [Steinhauser '96]
- NLO QCD all m_H [Melnikov,Yakovlev'93] [Djouadi,Spira,Zerwas'93] [Inoue,Najima,Oka,Saito'94] analytic form [Fleischer,Tarasov,Tarasov'04] [Harlander,Kant'05] [Aglietti,Bonciani,Degrassi,Vicini'06]

partial EW NLO (2-loop)

- O(G_Fm²_t) asymptotic expansion [Liao,Li'96] [Djouadi,Gambino, Kniehl'97] [Fugel,Kniehl,Steinhauser'04]
- Iight fermions analytically [Aglietti,Bonciani,Degrassi,Vicini'04]
- top/YM below WW with Taylor expansion [Degrassi,Maltoni'05]

similar size as QCD corrections

SM EW NLO $H \rightarrow \gamma \gamma / gg$

complete EW & QCD NLO (2-loop) corrections to ${\it H} \rightarrow \gamma \gamma / gg$

[Actis, Passarino, Sturm, Uccirati '07] method

- numerical approach
 - Generation of Feynman diagrams
 - Algebraic manipulations
 - Map different topologies on form factors
 - Extract UV-pole part analytically
 - Check their cancellation with counter terms
 - Finite remainder evaluated numerically in parametric space
- treshold singularities regularized by complex W/Z masses covers all kinematic regions including thresholds
- complete mass dependence m_W, m_Z, m_t, m_H no expansions

SM EW NLO ${m H} o \gamma \gamma / {m g}{m g}$

 ${\it H} \rightarrow \gamma \gamma$

- QCD corrections $\delta = +1.8 \ldots + 0.9\%$
- EW effects $\delta = -1.9 \ldots + 3.5\%$
- Cancellation between $\delta_{\rm QCD}$ and $\delta_{\rm EW}$ below threshold -0.1%(120 GeV)
- dominant \$\mathcal{O}(G_F m_t^2)\$ corrections large but not dominant
- complete 2-loop: $\delta = -0.1 \dots + 4\%$
- $H \rightarrow gg$
 - corrections $-4 \dots + 6\%$

Actis, Passarino, Sturm, Uccirati '07

1 Introduction

2 Standard Model

MSSM Higgs Sector

constrained 2 Higgs Doublet Model type II

$$H_{1} = \begin{pmatrix} v_{1} + \frac{1}{\sqrt{2}}(\phi_{1} - i\chi_{1}) \\ -\phi_{1}^{-} \end{pmatrix} \qquad H_{2} = \begin{pmatrix} \phi_{2}^{+} \\ v_{2} + \frac{1}{\sqrt{2}}(\phi_{2} + i\chi_{2}) \end{pmatrix}$$

$$V = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - (m_{12}^2 \varepsilon_{\alpha\beta} H_1^{\alpha} H_2^{\beta} + \text{h.c.}) \\ + \frac{g_1^2 + g_2^2}{8} (H_1 \bar{H}_1 - H_2 \bar{H}_2)^2 + \frac{g_2^2}{2} |H_1 \bar{H}_2|^2$$

- 5 physical Higgs states: h_0 , H_0 , A_0 , H^{\pm}
- 2 parameters: $\tan \beta = \frac{V_2}{V_1}$ and m_{A_0}
- 5 Higgs masses calculate m_{h₀}, m_{H₀}, m_{H[±]} from tan β and m_{A₀}

MSSM with complex parameters

- additional CP violating phases from soft breaking terms $A_f = |A_f|e^{i\phi_f}$ $\mu = |\mu|e^{i\phi_{\mu}}$ $M_i = |M_i|e^{\phi_i}$
- Higgs sector no CP violation at leading order CP violation enters through loops at NLO
- h, H, A mix \rightarrow mass eigenstates h_1 , h_2 , h_3 $m_{h_1} < m_{h_2} < m_{h_3}$

MSSM Higgs masses

higher order corrections to mass matrix

$$\begin{pmatrix} q^2 - m_h^2 + \hat{\Sigma}_{hh}^{\bullet\circ\circ} & \hat{\Sigma}_{hH}^{\bullet\circ\circ} & \hat{\Sigma}_{hA}^{\bullet\circ} \\ \hat{\Sigma}_{Hh}^{\bullet\circ\circ} & q^2 - m_H^2 + \hat{\Sigma}_{HH}^{\bullet\circ\circ} & \hat{\Sigma}_{HA}^{\bullet\circ} \\ \hat{\Sigma}_{Ah}^{\bullet\circ\circ} & \hat{\Sigma}_{AH}^{\bullet\circ\circ} & q^2 - m_A^2 + \hat{\Sigma}_{AA}^{\bullet\circ\circ} \end{pmatrix}, \quad \hat{\Sigma}_{H^+H^-}^{\bullet\circ\circ}$$

- leading $\mathcal{O}(\alpha_t \alpha_s)$ complex MSSM 2-loop [Heinemeyer, Hollik, Rzehak, Weiglein '07]
- leading $\mathcal{O}(\alpha_t^2)$ + subleading $\mathcal{O}(\alpha_b \alpha_s, \alpha_t \alpha_b, \alpha_b^2)$ 2-loop real MSSM [Degrassi, Slavich, Zwirner '01] [Brignole, Degrassi, Slavich, Zwirner '01, '02] [Dedes, Degrassi, Slavich '03]
- o full one-loop [Frank, Heinemeyer, Hollik, Weiglein '02]

3-loop LL and NLL $\mathcal{O}(\alpha_t \alpha_s^2, \alpha_t^2 \alpha_s, \alpha_t^3)$ [Martin '07]

impact of radiative corrections on masses

- LO: $m_{h_0} < m_Z$
- NLO: +35 GeV shift
- residual uncertainty 2 3 GeV [Allanach et al '04] much larger than ILC error $\delta m_H \approx 50 \text{ MeV}$

 \Rightarrow need higher precision

MSSM m_{h_0} at 3-loop

3-loop SUSY QCD corrections $\mathcal{O}(\alpha_t \alpha_s^2)$ to m_{h_0} [Harlander, Kant, Mihaila, Steinhauser '08]

- full calculation not feasible use expansions in mass ratios
 → one-scale integrals
- all sps points covered
- automatic: QGRAF, Q2E, EXP, MINCER, MATAD, FORM
- check: expansion accurate within *O*(100 MeV) for known 2-loop results
- code public: <u>H3m</u>

3-loop corrections about $0.5 - 2 \, \text{GeV}$

remaining uncertainty

- scale uncertainty reduced to *O*(100 MeV)
- theory uncertainty conservative estimate 50% of Δm_{h_0} (3-loop) $\rightarrow \delta m_{h_0} = 0.1 - 1 \text{ GeV}$ for $m_{1/2} = 100 \text{ GeV} - 1 \text{ TeV}$
- parametric uncertainty α_s, m_t, ... about O(500 MeV)

$\text{MSSM } A_0 \rightarrow \gamma \gamma$

- $\Gamma(A_0 \rightarrow \gamma \gamma)$
 - LO loop induced: heavy quarks, light leptons, light charginos
 - NLO QCD $\mathcal{O}(\alpha_s)$

[Spira, Djouadi, Graudenz, Zerwas '93] [Harlander, Kant '05] [Aglietti, Bonciani, Degrassi, Vicini '07]

- NNLO QCD $\mathcal{O}(\alpha_s^2)$ for $m_t \to \infty$ [Chetyrkin, Kniehl, Steinhauser, Bardeen '98]
- dominant EW NLO (2-loop) $\mathcal{O}(G_f m_t^2)$ [Brod, Fugel, Kniehl '08]
 - susy particles decoupled
 - all Higgs particles light
 - asymptotic expansions in mass ratios
- $\delta_{\rm EW}$ similar size as $\delta_{\rm QCD}$ cancellations between EW and QCD

[Mihaila, Reisser '10]

 $\mathcal{O}(\alpha_s^2)$ corrections to fermionic Higgs decays

- 2-loop sqcd to $H \rightarrow b\bar{b}$ and $H \rightarrow \tau \tau$ in MSSM
- effective Lagrangian approach: assume $m_H \ll m_t, m_{\tilde{g}}, m_{\tilde{q}}$ result
 - scale dependence reduced
 - light m_h large NLO of about 50% NNLO about 8%

full NLO to $H^+
ightarrow W^+ h_0$ [Bejar, Lopez-Val, Hollik '09]

 H^+ decay channels

- dominant $H^+ \rightarrow \tau \nu_{\tau}$, $H^+ \rightarrow t \bar{b}$
- gauge boson channels $H^+
 ightarrow W^+ Z/\gamma$
- $H^+ \rightarrow W^+ h_0$

can be dominant, test CP

study different scenarios

scenario	<i>m_{h0}</i> max	no mixing	small α_{eff}	low M _{SUSY}	large tan β
$\tan eta$	3.5	3.5	3.5	3	55
$M_{H\pm}(GeV)$	450	425	420	320	850
MSUSY	2000	2000	800	300	970
μ	200	200	2000	300	1800
M_2	200	200	500	300	200
$A_t - \mu/$ tan eta	2000	0	-1100	-300	1000

$\text{MSSM } H^+ \to W^+ h_0$

NLO main contributions

- top (stop) and bottom (sbottom) diagrams
 from the H⁺tb and h₀tt (and bb)
 Yukawa couplings
- wave function h₀ H₀ mixing terms

results

 corrections large > 100% in all scenarios

MSSM CP asymmetry for $H^+ \rightarrow W^+ h_1$

CP violating observable

diagrams contributing to CP asymmetry

 $\begin{array}{c} \tilde{\chi}_{j}^{0} \\ \hline \\ H^{-} \\ \tilde{\chi}_{j} \\ \hline \\ \tilde{\chi}_{m} \\ H^{-} \\ \tilde{\chi}_{m} \\ \hline \\ H^{-} \\ \tilde{\chi}_{m} \\ \hline \\ H^{-} \\ \tilde{\chi}_{m} \\ H^{-} \\ \tilde{\chi}_{m} \\ H^{-} \\ \tilde{\chi}_{m} \\ H^{-} \\ \tilde{\chi}_{m} \\ \tilde{\chi}_$

[Christova, Ginina, Stoilov '03] CP asymmetry from phases of A_{τ} and $M_1 \rightarrow$ least sensitive phases

[Dao, Hollik '10] CP asymmetry from all cMSSM phases

- masses up to 2-loop using FeynHiggs
- threshold singularities regularized using complex masses in singular loop integrals
- study impact of phases separately

MSSM CP asymmetry for $H^+ \rightarrow W^+ h_1$

$$\begin{split} \mu &= 200 \, \text{GeV}, M_2 = 200 \, \text{GeV}, M_3 = 0.8 M_{\text{SUSY}} \, \text{GeV}, |A_{\tau}| = |A_t| = |A_b|, \\ M_{\tilde{D}} &= M_{\tilde{D}} = M_{\tilde{L}l} = M_{\text{SUSY}} = 500 \, \text{GeV}, M_{\tilde{L}} = 200 \, \text{GeV}, M_{\tilde{E}} = 150 \, \text{GeV} \end{split}$$

- ϕ_{τ}, ϕ_{1} impact small $\delta < 1\%$
- ϕ_b impact moderate $\delta < 8\%$ near $\tilde{t}\tilde{b}$ thresholds
- ϕ_t effect largest: up to $\delta = +10... 50\%$ for large tan β
- strong dependence on A_t , $m_{H^{\pm}}$ and $\tan \beta$

MSSM $H^{\pm}tb$ production

NLO SUSY-QCD corrections to $e^+e^-
ightarrow H^-tar{b}$ [Kniehl, Maniatis, M.W. '10]

complements QCD (gluonic) corrections [Kniehl, Madricardo, Steinhauser '02]

use numerical method [Ferroglia, Passera, Passarino, Uccirati '03]

- start from Feynman parametrization
- transform integral to smoothe integrand use Bernstein-Tkachov theorem [Bernstein '72] [Tkachov '97]
- combined numerical integration of phase space variables + Feynman parameters
- no inverse Gram determinants, numerically stable

resummation of tan β enhanced contributions in *tbH*[±] Yukawa coupling [Carena, Garcia, Nierste, Wagner '00]

MSSM $H^{\pm}t\bar{b}$ production

● O(10 – 60%) SUSY-QCD corrections

- bulk from $\tan \beta$ enhanced contributions, absorbed by resummation
- remaining corrections $\mathcal{O}(10\%)$
- numerical method works, agrees with analytical loop integrals errors numerical method

1 Introduction

2 Standard Model

3 MSSM

2 Higgs Doublet Model (2HDM)

2 Higgs doublets, both Y = +1

$$\Phi_1 = \begin{pmatrix} \Phi_1^+ \\ \Phi_1^0 \end{pmatrix} = \begin{pmatrix} \phi_1^+ \\ \frac{\nu_1 + \phi_1^0 + i\chi_1^0}{\sqrt{2}} \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} \Phi_2^+ \\ \Phi_2^0 \end{pmatrix} = \begin{pmatrix} \phi_2^+ \\ \frac{\nu_2 + \phi_2^0 + i\chi_2^0}{\sqrt{2}} \end{pmatrix}$$

$$V = \lambda_1 \left(\Phi_1^{\dagger} \Phi_1 - \frac{v_1^2}{2} \right)^2 + \lambda_2 \left(\Phi_2^{\dagger} \Phi_2 - \frac{v_2^2}{2} \right)^2 + \lambda_3 \left[\left(\Phi_1^{\dagger} \Phi_1 - \frac{v_1^2}{2} \right) + \left(\Phi_2^{\dagger} \Phi_2 - \frac{v_2^2}{2} \right) \right]^2 + \lambda_4 \left[(\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) - (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \right] + \lambda_5 \left[\text{Re}(\Phi_1^{\dagger} \Phi_2) - \frac{v_1 v_2}{2} \right]^2 + \lambda_6 \left[\text{Im}(\Phi_1^{\dagger} \Phi_2) \right]^2$$

- 3H, 4H coupling unconstrained
- 7 parameters: *M_{h₀}*, *M_{H₀*}, *M_{A₀*}, *M<sub>H<sup>±</sub>*</sub>, α, tan β, λ₅ λ₅ can be large
 </sub></sup>

[Bernal, Lopez-Val, Sola '10]

full NLO calculation for Higgsstrahlung $e^+e^- \to Z^* \to Zh_0/ZH_0$

LO coupling fixed by gauge structure

$$\begin{split} \mathcal{L}_{Z^0Z^0h_0} &= \frac{e\sin(\beta-\alpha)M_Z}{s_wc_w}g^{\mu\nu}Z_{\mu}^0Z_{\nu}^0h_0\\ \mathcal{L}_{Z^0Z^0H_0} &= \frac{e\cos(\beta-\alpha)M_Z}{s_wc_w}g^{\mu\nu}Z_{\mu}^0Z_{\nu}^0H_0 \end{split}$$

same as in MSSM

- NLO enhanced contributions
 - $-h_0 Z\gamma$ loop induced vertex $O(e\alpha_{ew}\lambda_{3H})$
 - $-h_0ZZ$ vertex corrections $\mathcal{O}(\alpha_{ew}^2, e\alpha_{ew}\lambda_{3H})$
 - $-h_0/H_0$ wave function renormalization $\mathcal{O}(\lambda_{3H}^2)$

2HDM: Higgsstrahlung $e^+e^- \rightarrow Zh/H$

corrections

- large and negative up to -60%
- dominant contribution: h₀/H₀ wave function renormalization
- gauge boson and fermion (including Yukawa) loop subleading
- compare MSSM: dominant correction from Yukawa interaction

Bernal, Lopez-Val, Sola '10

[Lopez-Val, Sola '10]

full NLO for neutral Higgs pair production $e^+e^- \to A_0 h_0/A_0 H_0$

LO coupling fixed by gauge structure

$$\mathcal{L}_{A_0Zh_0} = \frac{e\cos(\beta - \alpha)M_Z}{s_w c_w} Z_\mu A_0 \overleftrightarrow{\partial}^\mu h_0$$
$$\mathcal{L}_{A_0ZH_0} = \frac{e\sin(\beta - \alpha)M_Z}{s_w c_w} Z_\mu A_0 \overleftrightarrow{\partial}^\mu H_0$$

• NLO contributions $\mathcal{O}(\alpha_{ew}\lambda_{3H}^2)$: $A_0h_0H_0$, WF h_0 , H_0h_0 , A_0Z_0 , A_0G_0

2HDM: neutral Higgs pair production

corrections

- large, positive for large λ_5 , small tan β
- dominant corrections from A₀h₀Z vertex
- effects generic no strong dependence on
 - Higgs mass spectrum
 - pattern of Yukawa couplings
 - which channel A_0h_0 , A_0H_0
- MSSM only 20% corrections from Yukawa-like couplings
- large radiative corrections distinguish underlying model

I did not talk about

- tan β resummation at 2-loop in MSSM see talk Michael Spira
- Higgs masses in complex MSSM see talk Sven Heinemeyer
- radiative corrections to NMSSM Higgs masses see talk Florian Staub
- $\gamma\gamma$ collider

- radiative corrections to Higgs physics needed for ILC precision
- SM predictions in good shape
- MSSM
 - push for higher orders
 - exploration of CP violation in cMSSM
- BSM (MSSM/2HDM): radiative corrections important for distinguishing underlying Higgs sector