I. Chaikovska, O. Dadoun, F. Poirier, A. Variola LAL, Université - Paris Sud XI, IN2P3/CNRS, Orsay, France R. Chehab, IPNL IN2P3, Villeurbanne, France

> IWLC2010, CERN October 21, 2010

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Outline

1 Compton polarized positron sources

- 2 High energy photons production
- **3** Positrons production
- 4 Positrons capture and primary acceleration

5 Summary

Compton polarized positron sources

General scheme

Compton scheme

Compton backscattering of laser light off an electron beam – method to produce circularly polarized high energy photons.

Compton polarized positron sources

Why Compton scheme?

Why Compton scheme?

- Method to obtain **polarized** positrons
- Low energy operation, independent from the main linac...

still some difficulties

- Photons: optical cavity (high power and high quality LASER).
- e^+ stacking and damping.
- Electrons: three proposals Ring-based, ERL-based, Linac-based Compton scheme.

- No bunch degradation for each collision
- At present, main limitation weak charge per bunch. Thus, repetition frequency and then stacking efficiency are the main parameters.

Compton polarized positron sources

Why Compton scheme?

Why Compton scheme?

- Method to obtain **polarized** positrons
- Low energy operation, independent from the main linac...

still some difficulties

- Photons: optical cavity (high power and high quality LASER).
- e^+ stacking and damping.
- Electrons: three proposals Ring-based, ERL-based, Linac-based Compton scheme.

- No bunch degradation for each collision
- At present, main limitation weak charge per bunch. Thus, repetition frequency and then stacking efficiency are the main parameters.

Compton polarized positron sources

Why Compton scheme?

Why Compton scheme?

- Method to obtain **polarized** positrons
- Low energy operation, independent from the main linac...

still some difficulties

- Photons: optical cavity (high power and high quality LASER).
- e^+ stacking and damping.
- Electrons: three proposals Ring-based, ERL-based, Linac-based Compton scheme.

- No bunch degradation for each collision
- At present, main limitation weak charge per bunch. Thus, repetition frequency and then stacking efficiency are the main parameters.

Compton polarized positron sources

Why Compton scheme?

Why Compton scheme?

- Method to obtain **polarized** positrons
- Low energy operation, independent from the main linac...

still some difficulties

- Photons: optical cavity (high power and high quality LASER).
- e^+ stacking and damping.
- Electrons: three proposals Ring-based, ERL-based, Linac-based Compton scheme.

- No bunch degradation for each collision
- At present, main limitation weak charge per bunch. Thus, repetition frequency and then stacking efficiency are the main parameters.

Compton polarized positron sources

Why Compton scheme?

Why Compton scheme?

- Method to obtain **polarized** positrons
- Low energy operation, independent from the main linac...

still some difficulties

- Photons: optical cavity (high power and high quality LASER).
- e^+ stacking and damping.
- Electrons: three proposals Ring-based, ERL-based, Linac-based Compton scheme.

- No bunch degradation for each collision
- At present, main limitation weak charge per bunch. Thus, repetition frequency and then stacking efficiency are the main parameters.

Compton polarized positron sources

Why Compton scheme?

Why Compton scheme?

- Method to obtain **polarized** positrons
- Low energy operation, independent from the main linac...

still some difficulties

- Photons: optical cavity (high power and high quality LASER).
- e^+ stacking and damping.
- Electrons: three proposals Ring-based, ERL-based, Linac-based Compton scheme.

- No bunch degradation for each collision
- At present, main limitation weak charge per bunch. Thus, repetition frequency and then stacking efficiency are the main parameters.

Compton polarized positron sources

Why Compton scheme?

Why Compton scheme?

- Method to obtain **polarized** positrons
- Low energy operation, independent from the main linac...

still some difficulties

- Photons: optical cavity (high power and high quality LASER).
- e^+ stacking and damping.
- Electrons: three proposals Ring-based, ERL-based, Linac-based Compton scheme.

- No bunch degradation for each collision
- At present, main limitation weak charge per bunch. Thus, repetition frequency and then stacking efficiency are the main parameters.

Compton polarized positron sources

Why Compton scheme?

Why Compton scheme?

- Method to obtain **polarized** positrons
- Low energy operation, independent from the main linac...

still some difficulties

- Photons: optical cavity (high power and high quality LASER).
- e^+ stacking and damping.
- Electrons: three proposals Ring-based, ERL-based, Linac-based Compton scheme.

- No bunch degradation for each collision
- At present, main limitation weak charge per bunch. Thus, repetition frequency and then stacking efficiency are the main parameters.

High energy photons production

Compton IP parameters

Description	Value	Value	Value
e^- beam energy [GeV]	1.3	1.8	3.0
Electron bunch charge [nC]	1.6	1.6	1.6
e^- bunch length [ps]	2	2	2
$\operatorname{IP} eta_{x,y} [\texttt{m/rad}]$	0.16	0.16	0.16
Emittance $(\gamma \epsilon_x, \gamma \epsilon_y)$ [μ m rad]	5	5	5
LASER type	Fiber	Fiber	Fiber
LASER photon energy [eV]	1.17	1.17	1.17
LASER beam waist radius (ω_0) [μ m]	10	10	10
RMS hor./vert. beam size (σ) [μ m]	18	15	12
LASER pulse energy [J]	0.1	0.1	0.1
Crossing angle	2°	2°	2°
LASER pulse length [ps]	5	5	5
Photon beam peak energy [MeV]	29.5	56	152.5

5/20

High energy photons production

Photons flux with multiple IPs line. 10 IPs with 2 crossing LASERs.

High energy photons production

Description of the parameters. Photons production.

 $E_e = 1.3 \text{ GeV}, E_{ph} = 1.17 \text{eV}$ @ last IP

2 LASERs, 5IPs, $\langle E_{\gamma} \rangle = 14.7$ MeV, Polarization= 0 $E_e{=}1.3$ GeV, $E_{ph}{=}1.17\mathrm{eV}$ @ diaphragm

2 LASERs, 5IPs, $\langle E_{\gamma} \rangle = 17.7$ MeV, Polarization= 23%

Polarization selection

 $\gamma \Rightarrow \theta(Diaphragm) \Rightarrow E \Rightarrow Polarization$

High energy photons production

8/20

High energy photons production

Polarization. Yield. Diaphragm effect.

Gamma's polarization and yield vs. diaphragm size

9/20

High energy photons production

Photons production. Summary.

Electrons energy [GeV]	1.3	1.8	3.0
Maximum photons energy [MeV]	29.5	56	152.5
Mean photons energy $[MeV]$	14.7	27.8	75.7
Aperture (\oslash) after 5m of drift [mm]	25	15	10
Mean photons energy after apert $\tt [MeV]$	17.7	35	93.4
Mean photons polarization	23~%	30%	25~%
Diaphragm efficiency $(N_{\gamma}^{dia}/N_{\gamma}^{tot})$	0.79	0.73	0.75
Compton source efficiency $(N_{\gamma}^{tot}/N_{e^-})$	0.07	0.09	0.12
Compton source yield $(N_{\gamma}^{dia}/N_{e^-})$	0.06	0.06	0.09

・ロト ・御ト ・ヨト ・ヨト

Positrons production

Parameters of positrons production

Description	Value	Value	Value
Photons beam peak energy [MeV]	29.5	56	152.5
Mean photons energy [MeV]	14.7	27.8	75.7
Mean photons energy after aperture [MeV]	17.7	35	93.4
Target material	W	W	W
W density (near r.t.) $[g/cm^3]$	19.25	19.25	19.25
Tungsten radiation length (X_0) [g/cm ²]	8	8	8
Target thickness [mm]	2.2	3.2	5.2
Target size [cm]	2.5	2.5	2.5

Positrons production

Target thickness optimization

イロト イヨト イヨト イヨト

Positrons production

Target thickness optimization I

Results of optimization

For the 1.3 GeV \rightarrow 2.2 mm

0.03 0.65 0.05 0.04 0.60 Polarization 0. 0.55 0.02 0.50 0 2 6 8 10 12 14 л Thickness [mm]

Results of optimization

For the 1.8 GeV \rightarrow 3.2 mm

Positrons production

Target thickness optimization II

Results of optimization

For the 3.0 GeV \rightarrow 5.2 mm

Positrons capture and primary acceleration

Transverse phase space distribution at the target

・ロト ・ 同ト ・ ヨト ・ ヨト

Positrons capture and primary acceleration

Matching device. AMD.

Positron capture optics (AMD)

Magnetic field varies along z- direction as $B(z)=\frac{B_0}{1+\alpha z}$

Condition for an adiabatic field variation $\frac{P}{eB^2} \frac{dB}{dz} \ll 1$ should be fulfilled.

Initial field $B_0 = 6$ T

Taper parameter $\alpha = 0.22 \ cm^{-1}$

Aperture radius a = 2 cm

Electrons energy [GeV]	3.0
Positrons production yield $(N_{e^+}/N_{\gamma}^{dia})$	0.36
Accepted positrons yield at the AMD $(N_{e^+}^{acc}/N_{\gamma}^{dia})$	0.15
AMD capture efficiency $(N_{e^+}^{acc}/N_{e^+}^{targ})$	0.42
Compton source accepted efficiency $(N_{e^+}^{acc}/N_{e^-})$	0.013

Positrons capture and primary acceleration

Energy spectra. $E_e = 3.0 \text{ GeV}$ 0.5 Target \Rightarrow Impinging gammas, positrons @ target and positrons @ exit of AMD. d/xd htemp htemp htemp -0.5 440884 Entries 6575 Entries 157733 Entries Mean 21.55 Mean 31.02 Mean 93.43 9000 RMS RMS RMS 23.93 26.7 40.93 8000 -1.5 -0.5 0.5 1.5 -1 0 7000 x [cm] 6000Ē 0.3E 5000 Ω 4000 0. 3000 d/xc 2000 1000 -0 ٥t -0.2 20 40 60 80 100 120 140 160 E [MeV] -0.3 -2 -1.5 0.5 1.5 -1 -0.5x [cm]

2

Positrons capture and primary acceleration

Accelerating capture section (ACS)

ACS around 20 m long inside 0.5 T solenoidal magnetic field

 $2~\mathrm{GHz}\;\mathrm{TW}$ tanks of 4,36 m long each, 85 cells set up one tank

Aperture radius a = 2 cm

4 tanks are used to accelerate e^+ up to 200MeV

Same lattice and tank phase are used for each case, i.e. further lattice optimisation and adaptation is possible. See the talk of F. Poirier

Electrons energy [GeV]	1.3	1.8	3.0
Positrons production yield $(N_{e^+}/N_{\gamma}^{dia})$	0.07	0.16	0.36
ACS efficiency $(N_{e^+}^{\sim 200 MeV}/N_{e^+}^{targ})$	0.39	0.36	0.29
Compton source efficiency $(N_{e^+}^{\sim 200MeV}/N_{e^-})$	0.0016	0.004	0.01

18/20

Positrons capture and primary acceleration

∟Summary

Positron production and capture. Summary.

The choice of the capture and primary accelerating system depends on:

- expected positron yield
- 2 allowed energy dispersion

Electrons energy [GeV]	1.3	1.8	3.0
Mean photons energy after aperture [MeV]	17.7	35	93.4
Mean photons polarization	23~%	30%	$25 \ \%$
Positrons production yield $(N_{e^+}/N_{\gamma}^{dia})$	0.07	0.16	0.36
Mean positrons polarization	40 %	34%	22 %
Positrons production efficiency $(N_{e^+}/N_{\gamma}^{tot})$	0.06	0.12	0.27
Compton source production efficiency (N_{e^+}/N_{e^-})	0.004	0.01	0.03
ACS efficiency $(N_{e^+}^{\sim 200MeV}/N_{e^+}^{targ})$	0.39	0.36	0.29
Compton source efficiency $(N_{e^+}^{\sim 200MeV}/N_{e^-})$	0.002	0.004	0.01

▶ CLIC: $7.6 \times 10^9 e^+$ /bunch, CSE at 3.0 GeV: $1\% - 1 \times 10^8 e^+$ /bunch ⇒ 76 injections

