Compton ring and stacking ring for LC

Eugene Bulyak Thanks to: J. Urakawa, F. Zimmermann

NSC KIPT, Ukraine KEK, Japan; CERN

IWLCC 2010

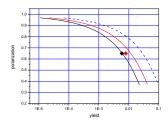
Eugene BULYAK Compton rings for LC

Storage Rings

- Large current attained with small charge: I = qc/L
- Many interactions of each electron/positron with laser pulses; large recoils caused by Compton scattering

Lasers

- Low field strength
- Temporal and spatial localization of laser pulses


Favorable features of each subsystem may neutralize negative ones

Direct: yield y of gammas in Compton sources (number of gammas generated in second) is proportional to product of the beam current / and the energy in the laser pulse p:

 $y \propto lp$,

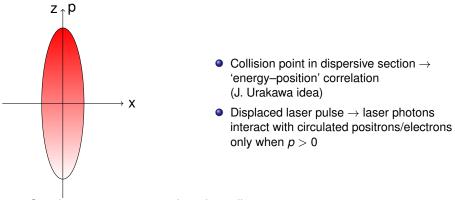
provided that scattering takes place at each turn.

param	units	value
E _{beam}	GeV	1.06
$U_{ m rf}$	MV	200
E _{las}	eV	1.16
E_{gamma}^{max}	MeV	20
$\sigma_x^{\breve{\prime}}/\sigma_z^{\prime}$	μ m	25/2
σ'_{Y}	mm	0.9
cross angle	deg	8
P_{las}	J	0.5
$\epsilon_{\rm hor}$	10 ⁻¹⁰ m	2.2
$\epsilon_{\rm vert}$	10 ⁻¹¹ m	2.0
$\sigma_E cp / out$	%	5.8 / 1
yield	1/(e turn)	0.12

Performance at 1 A current

- Average positron current 1/0.7 mA (W/Ti targets, simulated)
- Polarisation 0.65

ILC/CLIC average current $50/30 \,\mu$ A (with overhead).

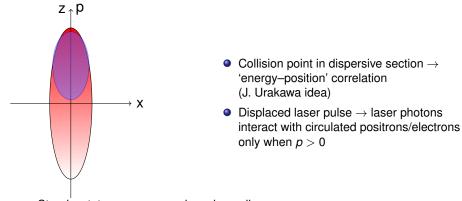

Compton ring sources provide enough positrons and time for cooling

• Large energy spread in electron bunches

- requires high RF-voltage
- limits attainable polarisation

Ability of laser pulses to be localized may help to overcome these drawbacks

Asymmetric Cooling Steady-state energy spread

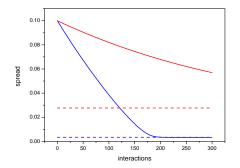


Steady-state energy spread much smaller:

$$\left\langle \boldsymbol{\rho}^2 \right\rangle_{as} \approx 2\pi^2 \left\langle \boldsymbol{\rho}^2 \right\rangle_*^2 = 2\pi^2 \left(\frac{7}{10} \gamma \gamma_{las} \right)^2 \;,$$

 $\langle p^2 \rangle_*$ is rms 'symmetric' spread (e.g. CLIC CR 5.8% sym, 1.5% asym)

Asymmetric Cooling Steady-state energy spread

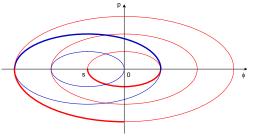


Steady-state energy spread much smaller:

$$\left\langle \boldsymbol{\rho}^2 \right\rangle_{as} \approx 2\pi^2 \left\langle \boldsymbol{\rho}^2 \right\rangle_*^2 = 2\pi^2 \left(\frac{7}{10} \gamma \gamma_{las} \right)^2 \;,$$

 $\langle p^2 \rangle_*$ is rms 'symmetric' spread (e.g. CLIC CR 5.8% sym, 1.5% asym)

Asymmetric (fast) Cooling CLIC Damping Ring

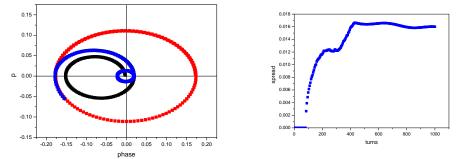


units	value
GeV	2.86
MV	20
eV	0.116
MeV	14.6
μ m	50/50
mm	1.0
deg	0
J	0.85
%	2.8 / 0.34
1/(e t)	0.19/0.1
	GeV MV eV MeV μm mm deg J

Time scales per collision Asymmetric cooling feasible for damping rings (200 coll \approx 3 ms)

Damping of Coherent Oscillations (Compton Injection)

Is it possible to damp coherent oscillations in less than period?



Synchrotron phase plane

Idea

- Center–of–weight moves along ellipses in the phase plane centered at:
 - origin no energy loss
 - synchronous phase to compensate energy loss with rf acceleration
- Switching laser on/off at p = 0 redirects bunch from one ellipse to another

Compton Injection – Simulations DR with small momentum compaction, $\alpha = 2 \times 10^{-6}$

Spread in injected bunch vs. turns

Synchrotron phase plane Compton injection possible in principle

Summary and Outlook

Conclusion

- Storage ring + laser' systems able to generate intense beams of highly polarised positrons
- Application of specific localization of laser radiation may enhance performance of Compton sources and damping rings
- Fast damping of coherent synchrotron oscillations principally possible
- Issues in transversal motion may occur

Studies to do

- Betatron dynamics at fast cooling
- Simulations of fast cooling
- . . .