ATF2 Results

T. Tauchi, IWLC 2010, CERN and CICG,19 October 2010

References : ATF2 Proposal, KEK Report 2005-2 ATF2 Proposal Vol.2, KEK Report 2005-9 ATF home page : http://atf.kek.jp/

with 110 authors (25 research institutes around the world) J.Urakawa, KNU-KEK ATF2 collaboration meeting, 16-19 Mar.2008

KEK High Energy Accelerator Research Organization

in Tsukuba site, Japan

N.Terunuma, ICB meeting, ILC10, Beijing, 29 March.2010

ATF International Collaboration

ATF2: Goal - I A. Achievement of 37nm beam size A1) Demonstration of a new compact final focus system; proposed by P.Raimondi and A.Seryi in 2000, A2) Maintenance of the small beam size (several hours at the FFTB/SLAC) Goal - II B. Control of the beam position B1) Demonstration of beam orbit stabilization with nano-meter precision at IP. (The beam jitter at FFTB/SLAC was about 40nm.) B2) Establishment of beam jitter controlling technique at nano-meter level with ILC-like beam

Publication of First Results by May 2009

in PR-STAB 13, 042801 (2010)

Present status and first results of the final focus beam line at the KEK Accelerator Test Facility

P. Bambade, ^{1,6,*} M. Alabau Pons,² J. Amann,³ D. Angal-Kalinin,⁴ R. Apsimon,⁵ S. Araki,⁶ A. Aryshev,⁶ S. Bai,⁷
P. Bellomo,³ D. Bett,⁵ G. Blair,⁹ B. Bolzon,⁸ S. Boogert,⁹ G. Boorman,⁹ P. N. Burrows,⁵ G. Christian,⁵ P. Coe,⁵
B. Constance,⁵ J.-P. Delahaye,¹⁰ L. Deacon,⁹ E. Elsen,¹¹ A. Faus-Golfe,² M. Fukuda,⁶ J. Gao,⁷ N. Geffroy,⁸
E. Gianfelice-Wendt,¹² H. Guler,¹³ H. Hayano,⁶ A.-Y. Heo,¹⁴ Y. Honda,⁶ J. Y. Huang,¹⁵ W. H. Hwang,¹⁵ Y. Iwashita,¹⁶
A. Jeremie,⁸ J. Jones,⁴ Y. Kamiya,¹⁷ P. Karataev,⁹ E.-S. Kim,¹⁴ H.-S. Kim,¹⁴ S. H. Kim,¹⁵ S. Komamiya,¹⁷ K. Kubo,⁶
T. Kume,⁶ S. Kuroda,⁶ B. Lam,³ A. Lyapin,¹⁸ M. Masuzawa,⁶ D. McCormick,³ S. Molloy,⁹ T. Naito,⁶ T. Nakamura,¹⁷
J. Nelson,³ D. Okamoto,¹⁹ T. Okugi,⁶ M. Oroku,¹⁷ Y. J. Park,¹⁵ B. Parker,²⁰ E. Paterson,³ C. Perry,⁵ M. Pivi,³
T. Raubenheimer,³ Y. Renier,^{1,6} J. Resta-Lopez,⁵ C. Rimbault,¹ M. Ross,¹² T. Sanuki,¹⁹ A. Scarfe,²¹ D. Schulte,¹⁰
A. Seryi,³ C. Spencer,³ T. Suehara,¹⁷ R. Sugahara,⁶ C. Swinson,⁵ T. Takahashi,²² T. Tauchi,⁶ N. Terunuma,⁶ R. Tomas,¹⁰
J. Urakawa,⁶ D. Urner,⁵ M. Verderi,¹³ M.-H. Wang,³ M. Warden,⁵ M. Wendt,¹² G. White,³ W. Wittmer,³ A. Wolski,²³
M. Woodley,³ Y. Yamaguchi,¹⁷ T. Yamanaka,¹⁷ Y. Yan,³ H. Yoda,¹⁷ K. Yokoya,⁶ F. Zhou,³ and F. Zimmermann¹⁰

(ATF Collaboration)

¹LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France ²Instituto de Fisica Corpuscular (CSIC–University of Valencia), Valencia, Spain ³SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA ⁴Cockcroft Institute, STFC, Daresbury Laboratory, United Kingdom ⁵John Adams Institute, Oxford, United Kingdom ⁶High Energy Accelerator Research Organization, Tsukuba, Japan ⁷Institute of High Energy Physics, Beijing China ⁸LAPP, Université de Savoie, CNRS/IN2P3, Annecy-le-Vieux, France ⁹John Adams Institute, Royal Holloway, United Kingdom ¹⁰European Organization for Nuclear Research, Geneva, Switzerland ¹¹Deutsches Elektronen-Synchrotron, Hamburg, Germany ¹²Fermi National Accelerator Laboratory, Batavia, Illinois 60510-5011, USA ¹³Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Palaiseau, France ¹⁴Kyungpook National University, Korea ¹⁵PAL, Korea ¹⁶Kyoto ICR, Japan ¹⁷The University of Tokyo, Japan ¹⁸UCL, London, United Kingdom ¹⁹Tohoku University, Japan ²⁰Brookhaven National Laboratory, Upton, New York 11973-5000, USA ²¹Cockcroft Institute, University of Manchester, United Kingdom ²²*Hiroshima University, Japan* ²³Cockcroft Institute, University of Liverpool, United Kingdom (Received 1 November 2009; published 21 April 2010)

ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

ATF2 beam line and planned/proposed R&Ds 2008 - 2010 - 2012 (-2014 - ?)

ATF2 beam line and planned/proposed R&Ds 2008 - 2010 - 2012 (-2014 - ?)

ATF long term plan

ATF long term plan

Parameters	unit	ATF2	ILC	CLIC	S-KEKB (LER/HER)
Beam Energy	GeV	1.3	250	3000	4/7
L*	m	1	3.5-4.5	3.5	0.47/1.3
γε×	m-rad	5x10-6	1x10 ⁻⁵	6.6x10 ⁻⁷	2.5/3.3x10 ⁻⁵
ХX	nm	2	1.0 (DR)	0.1 (DR)	3.2/2.4
γεγ	m-rad	3x10 ⁻⁸	4x10 ⁻⁸	2x10 ⁻⁸	1.0/1.2x10 ⁻⁷
Е у	pm	12	2(DR)	1(DR)	13/8.4
$\beta *_{\times}$	mm	4 (8)	21	6.9	32/25
β* y	mm	0.1	0.4	0.07	0.27/0.41
η '	rad	0.14	0.0094	0.00144	
σ	%	~0.1	~0.1	~0.3	0.08/0.06
Chromaticity	L*/ β* _y	~104	~104	~5x10 ⁴	1.7/3.2x10 ³
σ^*_{\times}	μm	2.8(4.0)	0.655	0.039	10.2/7.8
σ* y	nm	37	5.7	0.7	59/59

S. Boogert, ATF2 Project Meeting, 14-17 December, 2009

ATF2 BPM layout

Y. Kim, ATF Operation Meeting, 23 April, 2010

All BPM Resolution Determination

Results of Continuous Run

for a week of 17-21 May, 2010

Purpose : to tune the beam size as small as possible Optics : 10 times $\beta^{*}_{x,y}$: σ^{*}_{y} =110nm for ε_{y} =12pm

Tuning Tasks (comments)

- 1. Startup
- 2. DR tuning COD, dispersion, coupling corrections ...
- 3. EXT & FFS C-band BPM calibration
- 4. FFS S-band BPM calibration
- 5. Initial EXT & FFS setup
- 6. EXT dispersion measurement and correction (x & y)
- 7. EXT Twiss + emittance calculation at IEX match point (x & y)
- 8. EXT coupling correction : not needed in this time
- 9. **IPBSM** preparation
- 10. Horizontal IP diagnostics (IP wire scanner) : -0.7% smaller QF1 strength for Dx
- 11. Horizontal IP re-matching (if required)
- 12. Vertical IP diagnostics (IP wire scanner): +5 mrad roll of QF1 for coupling
- 13. Vertical re-matching (if required)
- 14. FFS Model diagnostics (if required)
- 15. IP multiknob tuning with IPBSM vertical beam size mode : 3 iterations
- 16. IPBSM study : confirmed σ_y minimum at the setting points of 5 sextupoles

Results of dispersion correction

M. Oroku, ATF Operation Meeting, 16 April, 2010

IPBSM Beam Size Tuning scheme

Shintake Monitor System at IP

Laser path diagram (174 deg crossing angle)

The vertical optical table installed at ATF2 beam line

Shintake Monitor Best Result, 20 May 2010

Beam sizes (σ y) were minimum at setting positions of the 5 sextupoles after the multi-knob tuning.

Summary DR vertical emittance to < 2pm as the ILC-DR BPM electronics was upgraded after IPAC10, June 2010. Fast kicker studies next study in October, 2010 (1) Good performance for single bunch beam, i.e. angular jitter of about 4×10^{-4} (2) Need improvements for multi-bunch beam for the FID pulser, BPM system, stable generation and storage in DR R&Ds for the 2nd goal of ATF2 and ILC-BDS (1) FONT5 : good progress, i.e. very impressive results (2) IPBPM : tested at the upstream, wakefield effects seen, KNU electronics will be updated at KNU. (3) LW : installed and tested in the last run in April, 2010 (4) Multi-OTR system was installed in May, 2010. ATF2 < 100nm and 37nm by December, 2010, and March 2011, respectively (1) All the instruments have been commissioned; i.e. BPMs, IPBSM etc. (2) Beam tuning knobs have been developed and were also commissioned. (3) The continuos run was successful to achieve 300nm beam size; Improvements during this summer, e.g. FD alignment, Shintake monitor, BPMs