CLIC - CDR Status (Volume 2)

Hermann Schmickler, ILCW2010

- Volume 1 (some 40 pages) will be written after almost completion of volume 2 and 3 (spring 2011)
- Volume 3 was covered by Marcel Stanitzki
- This talk is on volume 2:

Outline

Volume 2 outline

- CDR Timescale & Strategy
- Baseline review in Spring 2010
- Present state of document

Layout of Volume 2

2) Accelerator Physics description of the Main Beam Complex

3) Accelerator Physics description of the Drive Beam Complex

3 TeV

Specifications

4) Preliminary design of a 500 GeV intermediate stage

5) Detailed description of the accelerator components

- 6) Civil Engineering and Services
- 7) CLIC technologies demonstrated in CTF3
- 8) Construction and Operational Scenarios
- 9) Energy Scanning
- 10) Detailed value estimate

General Comments for volume 2:

- The CDR is based on the CLIC 3 TeV option as baseline for the optimization of the parameters (single step construction).
- Implications of Construction staging starting from the lowest demanded energy as indicated by LHC results (500 Gev) up to the full 3 TeV machine described in separate chapter.

Parameter changes and optimization for this "500 GeV" machine plus additional consequences for later energy upgrades in the same chapter.

- Total power consumption; discussion of various scenarios from highest possible energy/luminosity to intermediate proposals in a specific chapter of volume 2
- Energy scanning: For the two construction stages (500 GeV and 3TeV) a presentation of the expected performance and optimised running scenarios for an energy variation of at least a factor two again as separate chapter of volume 2.
- CTF3 results: CLIC technologies as demonstrated by CTF3 experiments will be highlighted in a separate chapter

Time Scale ... as shown last workshop

• Time-Scale: - author lists, general information letter: February 2010 → May 2010 - Publication of changes to CLIC baseline: End March 2010 - Progressive redaction: April 2010 – late summer 2010 - First draft of CDR (vol 1&2): LC workshop at CERN in October 2010 - Almost complete draft Vol 2 for **Probably not CERN SPC in December 2010** - Final CDR: Spring 2011

Yes, April 2011 we want Volume 2 to be finished

People involved

- management of author-lists: A.Augier(CERN), M.Draper (CERN)
- final Latex processing: M.Draper(CERN), D.Manglunki (CERN), H.Schmickler (CERN)
- intl. editorial board: N.Phinney (SLAC), N.Toge (KEK), P.Lebrun(CERN), H.Schmickler(CERN)
- - authors:

i) responsible author: responsible for submission in time
ii) contributing author: active contribution to write-up
iii) supporting author: "signing-up" through a web-portal as CDR author

present layout: about 50 responsible authors, mainly CERN, plus another large number of contributing authors from Collaborations/CERN

CDR website

http://project-clic-cdr.web.cern.ch/project-CLIC-CDR/

Contains:

 a dryrun (12 submissions from summer for tests of software and as reading material for authors)
 the CDR skeleton (breakdown of document in 4 levels)
 a regularly updated draft version of the CDR
 a full table of the expected contributions and a link to preliminary material provided by the authors

Baseline parameter Review (1/5)

Item	Baseline	Alternative	Comments (TBS=To Be Studied)	Resp.
	Capability of whole complex to run at 100 Hz (70% DB current, 70 % DB energy			
	Capability of whole complex to run at 50 Hz (longer pulse, less charge per bunch)		To maintain luminosity during energy scan	
	Tunnel diameter 4.5 m with transverse ventilation	Longitudinal ventilation and other tunnel diameter	Allow space for electronics and limit heat dissipation to 150W/m	
General	Angle of tunnels to 18.8 mradianInstrumentation requires full performance at ½ chargeand half number of bunches		Net BDS bend angle	
	phase reference using outgoing beam as reference and/or distributed external timing		Performance to be evaluated in TDR phase	
	Machine protection: based on next pulse permit (post mortem analysis of previous pulse before enabling next pulse; "fault free" equipment for 2ms); masks for fast intra pulse losses			

Baseline parameter Review

Item	Baseline	Alternative	Comments (TBS=To Be Studied)	Resp.
	Capability of whole complex to run at 100 Hz (70% DB current, 70 % DB energy			
	Capability of whole complex to run at 50 Hz (longer pulse, less charge per bunch)		To maintain luminosity during energy scan	
	Tunnel diameter 4.5 m with transverse ventilation5.6m	Longitudinal ventilation and other tunnel diameter	Allow space for electronics and limit heat dissipation to 150W/m	
General	Angle of tunnels to 18.8 mradian		Net BDS bend angle	
	Instrumentation requires full performance at ½ charge and half number of bunches			
	phase reference using outgoing beam as reference and/or distributed external timing		Performance to be evaluated in TDR phase	
	Machine protection: based on next pulse permit (post mortem analysis of previous pulse before enabling next pulse; "fault free" equipment for 2ms); masks for fast			
	intra pulse losses			

Baseline parameter Review

	3.5 m			
	Tune-up dump at entrance of BDS			
	L* = 3.8m (detector length +-6m)	L* = 6 or 8 m		
	FF quadrupole: PM tunable for small changes and replaced	SC quadrupoles		
	for larger energy variations			
	FF supported by cantilever from tunnel	for L* 6m or 8m FF		
		attached to floor		
MDI	maximum detector field 5T			
/	no antiDID			
BDS	Solenoid compensation			
	feedforward on IP using sensors on IP quadrupoles		study needed	
	Fully integrate mechanical feedback and beam based		Needs sensors with absolute	
	feedback/feedforward		calibration and low noise	
	Momentum collimation before betatron collimation	Vice versa		
	Intra-pulse feedback at IP		To incr. stabilisation	
			specification by factor 2	

Baseline parameter Review

Main Beam	Two positron targets for e+ at 500 GeV and 3 TeV <i>Injector linac from 2 to 1 GHz</i> ? Injector linac with 2 GHz RF frequency			<u>Steffen</u> <u>Doebert</u>
	<i>DR frequency from 2 to 1 GHz ?</i> Damping Ring: RF cavity @ 1 GHz	2 GHz if beam loading can be managed	Pending feasibility of train inter-leave	<u>Steffen</u> Doebert
	Still in work		at DR exit within required stability	<u>Daniel</u> <u>Schulte</u>
injector complex	Damping Ring energy to 2.86 GeV			
complex	Booster linac adopt new position			
	Booster linac lattice from triplets to FODO		Adapt layout	
	Booster linac and transfer to ML at 8 or 9 GeV? Booster linac and transfer to ML at 9 GeV			<u>Franck</u> <u>Stulle</u>
	Booster linac RF frequency at 1, 2 or 4 GHz? Booster linac with 2 GHz RF frequency			<u>Steffen</u> Doebert
				<u>Daniel</u> <u>Schulte</u>

What next?

 Close parameter baseline for CDR Give authors time to write now Contribution chasing will start in November after LC school Need 3 months for editing April 2011 is still a sensible deadline for final draft of volume 2