

System Integration: TTF/FLASH '9mA' studies

J. Carwardine (Argonne) For the TTF/FLASH 9mA study team

- Motivation
- Overview of TTF/FLASH
- Studies highlights
- Upcoming studies program
- Wrap-up

ILC Reference Design

Main Linac

31 km

Main Linac RF Unit

Damping Rings

Main Linacs	
Cavities (9-cell)	14,560
Cryomodules	1680
RF Units	560
Cavities per RF Unit	26
Avg. operating gradient	31.5MV/m
Gradient spread	+/-20%

IWLC 2010 - J. Carwardine

Main Linac

הההההה לה

Electrons

String Test: goals from R&D Plan

(Integration Tests)

Demonstrate beam phase and energy stability at nominal current

- Important because of their potential cost impact:
 - demonstrate operation of a nominal section or RF-unit
 - determine the required power overhead
 - to measure dark current and x-ray emission
 - and to check for heating from higher order modes
- Needed to understand linac subsystem performance:
 - develop RF fault recognition and recovery procedures
 - evaluate cavity quench rates and coupler breakdowns
 - test component reliability

TTF/FLASH is currently the only facility where beam tests can be run

TDR-Phase System Integration (S2)

IWLC 2010 - J. Carwardine

ir

Specific objectives for the 9mA study

- Long bunch-trains with high beam loading (9mA)
 - 800µs pulse with 2400 bunches at 3MHz, 3nC per bunch
 - Vector Sum control of up to 24 cavities
 - +/- 0.1% energy stability
 - Cavity gradients approaching quench limits
 - Beam energy 700-1000MeV

Characterize operational limits

- Energy stability limitations and trade-offs
- Cavity gradient overhead needed for LLRF control
- Klystron power overhead needed for LLRF control
- HOM absorber studies (cryo-load)
- Operation close to limits, eg
 - Robust automation of tuning, etc
 - Quench detection/recovery, exception handling
 - Beam-based adjustments/optimization

Establish ILClike operating conditions

Studies under ILC-like operating conditions

TTF/FLASH facility

Feasibility demonstation at TTF (8mA, 800us)

From ICFA Beam Dynamics Newsletter #24, April 2001

• 3.5nC/bunch 1800 bunches @ 2.25MHz

IWLC 2010 - J. Carwardine

:lr

FLASH ee-Electron Las

FLASH layout (2009)

Comparison of machine parameters

2400 bunches at 3MHz (800 bunches at 1MHz)

		XFEL	ILC	FLASH design	9mA studies
Bunch charge	nC	1	3.2	1	3
Bunch rate	MHz	5	2.7	9	3
# bunches		3250	2625	7200	2400
Pulse length	μS	650	970	800	800
Current	mA	5	9	9	9

Vector Sum control of cavity fields

- A single klystron provides rf power to 24 cavities
- LLRF regulates the phase & amplitude of the vector sum of 24 cavity fields ("total energy gain")
- Critical issue: operating with a spread of gradients

FLASH is an operating FEL user facility (5000hrs/year, 93% uptime)

- > 6 undulator modules, total length 27 m
- > Fixed gap of 12 mm
 - permanent NdFeB magnets
 - peak B = 0.48 T, K = 1.23, period of 27.3 mm

NVSC/2010er J. Carwardine

FLASH design goals reached in 2007

FLASH. Free-Electron Laser in Hamburg

Lasing with a complete bunch train of 800 bunches at 13.4 nm

Electron beam energy of 1 GeV and lasing at 6.5 nm

Design-Strahlenergie für FLASH erreicht! Elektronenstrahl mit 6 Modulen erstmals auf 1 GeV beschleunigt

FLASH Reaches Design Beam Energy! Electron beam accelerated to 1 GeV with 6 modules for the first time

Der Durchbruch passiert wieder in einer Nachtschicht, genauer am 21.9.2007 um 0:57 Ubr Dieses Mal ging es um das Erreichen der geplan ten maximalen Strahlen ergie. Ziel: Betrieb mit höchster Energie - Erget nis: 1 GeV Energie !! Gemessenes Spektrum der spontanen Emission:

Ahrend der letzten Wartungspause: Einbau des ischleunigermoduls Nr. 6 in den FLADH-Tunnel. - 6,3 nm", so der Eintrag im elektronischen Logbuch uring the last shutd e no. 6 in the FLASH tunnel

Das Team im Kontrollraum beobachtete im Wellen-

reads the entry in the electronic logbook.

For the first time, the team in the control room ob-

as usual, the breakthrough

was achieved during a

a.m. This time, the aim

ight shift, to be precise

on September 21 at 0:57

was to reach the planned

aximum beam energy.

Wellenlängen-Weltrekord bei FLASH: 6,5 Nanometer! Geplanter Designwert für die Laserblitze erzielt

Wavelength World Record at FLASH: 6.5 Nanometers! Design value for laser flashes reached

WSchreiber J. Carwardine

Siegfried Schreiber | Workshop on Linac Operation an Long Bunch Trains | 22 Feb 2010

Studies highlights

High power long bunch-train operation (During 2 weeks of studies in Sept 2009)

Metric	ILC Goal	Achieved
Bunches per pulse	800 x 3nC (1MHz)	800 x 3nC
	2400 x 3nC (3MHz)	1800 x 3nC 2100 x 2.5nC ~2400 x 2nC
Charge in macro-pulse	7200nC @ 3MHz	5400nC @ 3MHz
Average beam power	36kW (7200nC, 5Hz, 1GeV)	22kW (5400nC, 5Hz, 800MeV)
Cavties operating at high gradients, close to quench	Up to 38Mv/m	Several cavities above 30MV/m

- 15 contiguous hours running with 3mA and 800us bunch trains
- Running at ~9mA with bunch trains of 500-600us for several hours
- Full pulse length (800us, ~2400 bunches) at ~6mA for shorter periods
- Energy deviations within long bunch trains: <0.5% p-p (7mA beam)
- Energy jitter pulse-pulse with long bunch trains: ~0.13% rms (7mA)

LLRF upgrades to improve energy stability

Upcoming studies

Upcoming 9mA studies at FLASH

- Future 9mA studies will benefit significantly from many recent machine improvements
- Characterize operation at gradient limits with beam loading
 - Gradient 'tilt' studies ('Pk/Qext' tuning methodology)
 - Compensation of Lorentz-force detuning with piezo tuners
 - Operation at high gradients is also a priority for FEL studies common program being developed
- Input to 9mA program from other facilities
 - Take advantage of recent piezo tuner studies at S1-Global
 - Utilize NML for 'RF-Only' studies to support and prepare for subsquent beam studies at FLASH
- Next 9mA studies shifts expected in Jan 2010

Cavity gradient tilts from beam loading

A 'feature' of running cavities with a spread of gradients from same RF source

Matched beam current with constant Pk:

$$I_{matched} = \frac{V_k}{\left(\frac{r}{Q}\right)Q_{ext}}$$

Knobs to correct cavity gradients tilts: Forward power, Loaded Q

Cavity gradient tilts: RF distribution schemes

(J.Carwardine) - LINAC 2010

ilc

FLASH ree-Electron Lase

Wrap-up

Extrapolating FLASH to ILC gradients

Gradient limits for 16 cavities in ACC6/7

Cavity quench limits and gradient spread are close to ILC design

Realistic conditions for 'Operation at the Limits' studies:

- •Gradient overhead, RF power overhead
- Vector-sum control
- •RF distribution setup
- •Lorentz-force detuning compensation

Summary

'Near ILC-like' operating conditions achieved (Sept 2009)

- Reliable steady-state operation with 800us bunch trains at 3mA
- Significant progress towards full spec: 9mA/600us, 6mA/800us
- Energy stability (7.5mA): ~0.5% p-p
- Energy stability (0.3mA): ~0.1% p-p
- Continuing improvements for routine FEL user operation
 - Cavity field regulation (June 2010, FEL op.): ~0.01% and <0.03 deg
 - Routine operation for users with trains of up to 200 bunches
 - Operation close to cavity gradient limits (up to 1.25GeV beam)
- FLASH is 6% of XFEL which itself is 6% of ILC. The beam performance parameters are quite close.
- In many ways it is an excellent representation of full ILC performance