



### CLIC Frequency Multiplication System aka Combiner Rings

Piotr Skowronski Caterina Biscari Javier Barranco



#### **Sketch of layout**















### **FMS Requirements**



- Preservation of bunch length not depending on a particular bunch pathway
  - It implies that each segment must be isochronous
- Output emittance can not be bigger then  $150\mu$ m·rad
  - Assumed input 130μm·rad (normalized)
  - Implies optimization of chromaticity and non-linear effects
- All above with large energy spread
  - At the moment 2% is assumed
    - Worst case scenario
  - The goal is to find a design with maximum acceptances

## Requirements for rings optics



The key component is time variable bump made with RF deflectors

- The horizontal phase advance between RF deflectors is  $\mu_x = 180$
- The RF bump offset at injection should be 2.5 0.5 cm.
- RF deflector kick should be as low as possible
- Dispersion should be closed



# Requirements for Rings optics

 In order to limit potential emittance growth due to wake fields in the RF deflectors

- Beam size should be kept as smaller as possible inside RF deflector
  - Preferably below 2 m.
- Tunes in both planes shall be around 0.6 0.04





IWLC 2010

20 Oct 2010



### **Dispersion in RF bump**



Solution: use sextupoles inside the bump
Drawback: phase advance changes with the

- amplitude of the bump
  - For "bump off" configuration it is not 180 deg anymore
    - the kick along the bunch is not automatically compensated by the second RF deflector





#### Solution: use sextupoles inside the bump

9







### **Three Bend Achromat**



All lines are based on Three Bend Achromat



- Quite stable under small errors 3
- Robust for tuning



### **Delay Loop**





### **Combiner Ring 1**















### **FMS performance**



### Tracking in CR1 over 3 turns Looks bad





IWLC 2010

## **Source of the Emittance Growth**



#### Tracking ellipses

- With different action variables
- Different dP/P
- Even big ellipses are not distorted
- But its center changes position with dP/P
  - Non-linear dispersion





### **Non-linear dispersion**



- Non-linear dispersion leads to large emittance growth
- Sextupoles are matched to minimize
  - Dispersions up to 4<sup>th</sup> order
  - R566
  - Chromaticities
    - Quite difficult to get it all







### **Corrected non-linearities in CR1**





### From beginning of DL to 3<sup>rd</sup> turn in CR1 (σ<sub>dP/P</sub>=0.6%)











# Tracking with ELEGANT including CSR



Q = 8 nC per bunch, # macroparticles = 50000
DL is the one with shorter dipole bending radius and hence is the most critical







-2×10<sup>-3</sup>

s (m)

-4×1 0<sup>-3</sup>

2×10-3

4×1 0<sup>-3</sup>











# **LONGER BUNCH LENGTH** $\sigma_{\rm L}$ 2mm and $\sigma_{\rm P}$ = 0.6 %













### **CSR: First Results**



- $\sigma_L = 2 \text{ mm}$ : safe with the nominal energy spread  $\sigma_P = 0.6\%$
- $\sigma_L = 1$  mm: slight distorsion with the nominal energy spread  $\sigma_P = 0.6\%$  on transverse and longitudinal plane
- With smaller energy spread the distortion is stronger
  - the bunch is shorter along the DL
  - the beam size smaller
    - lengthening comes through R56 and dispersion
    - beam size is energy spread dominated



### Conclusions



#### Lattice design completed

- Non-linear dispersion is the most important factor limiting the energy acceptance of the FMS
  - Sextupoles can limit its influence such that acceptance in dP/P can be close to 2%, above the required value
- 2mm bunch length is safe from CSR point of view
- TO DO
  - Optimize transfer lines design for emittance preservation
  - Matching of sextupoles for Turn Around
  - Design an achromatic injection bump for CR2 that fulfills all the requirements













