

Compensation of Transient Beam-Loading in CLIC Main Linac

Oleksiy Kononenko, Alexej Grudiev

IWLC, October 20, 2010

Contents

- Motivation
- Calculation of unloaded/loaded voltages
- Optimization of the pulse shape
- Spread minimization for BNS damping and transient in the subharmonic buncher
- Effects of the charge jitters in drive and main beams
- Conclusions

Motivation: CLIC Performance Issue

In order to have luminosity loss less than 1%, the RMS bunch-to-bunch relative energy spread must be below 0.03%

*CLIC-Note-764, private conversations with Daniel Schulte (CERN)

Beam Loading: Steady State

*Beam loading for arbitrary traveling wave accelerating structure. A. Lunin, V. Yakovlev

Energy Spread Minimization Scheme

Unloaded Voltage in AS

- fix phase switch times in buncher
- generate corresponding drive beam profile
- take into account PETS (+PETS on/off) bunch response
- calculate unloaded voltage

Loaded Voltage in AS

- calculate AS bunch response
- calculate total beam loading voltage
- add to unloaded voltage

Energy Spread Minimization varying buncher delays

Electric Field Distribution for Port and Plane Wave Excitations

Considering T24 CLIC main accelerator structure

Accelerating Voltage for the Port excitation and Beam Impedance

 $\begin{array}{l} \mathbf{E}^{\mathsf{port}}_{z}\left(\mathbf{z},\mathbf{f}\right) \rightarrow \left[\exp\left(\pm i \, {}^{*}z \, {}^{*}\omega/c \,\right) \right] \rightarrow \left[\int dz \, \right] \rightarrow \mathbf{V}_{U}\left(\mathbf{f}\right) \\ \mathbf{E}^{\mathsf{pw}}_{z}\left(\mathbf{z},\mathbf{f}\right) \rightarrow \left[\exp\left(\pm i \, {}^{*}z \, {}^{*}\omega/c \,\right) \right] \rightarrow \left[\int dz \, \right] \rightarrow \mathbf{V}\left(\mathbf{f}\right) \rightarrow \left[\mathbf{I}_{\mathsf{HFSS}} = 2^{*}\pi^{*}r \, {}^{*}E_{0}/Z_{0} \right] \rightarrow \mathbf{Z}(\mathbf{f}) \end{array}$

Envelopes of the Time Response for the Port Excitation and Wake Potential

CLIC Drive Beam Generation Complex

24 pulses - 100 A - 2.5 cm between bunches

*CLIC-Note-764

2.4 GeV - 60 cm between bunches

Drive Beam Combination Steps

f_{beam} = 4 * 3 * 2 * f_{buncher}

PETS: Single Bunch Response

*kindly provided by Alessandro Cappelletti, Igor Syratchev (CERN)

PETS: Generated Rectangular Pulse

t_{rise} ≈ 1.5 ns

Rectangular Pulse in Main Linac

Optimizing injection time one can optimize the energy spread down to the level of **6%** only

Schematic Pulse Shape for CLIC

Optimization Algorithm

Brief Description:

- 1. Fix injection time
- 2. Generate delays
- 3. Find the minimal energy spread and optimal delays
- 4. Repeat 2. starting from the optimal delays

Energy Spread Optimization Utility

Optimized Pulse Shape

Optimized Energy Spread along the Main Beam

RMS bunch-to-bunch relative energy spread is around 0.03%

Model Improvements

1. For BNS damping it is necessary to inject bunches a bit (10 - 30 deg) off-crest

 Take into account transient in the subharmonic buncher during DB phase switch

Energy Spread Dependence on the Injection Phase

Optimal Switch Delays for the Different Injection Phases

Transient in the Subharmonic Buncher During DB Phase Switch

Energy Spread Dependence on the Buncher Switch Time

Optimal Switch Delays for the Different Buncher Switch Times

Study of the Charge JitterInfluence on the Energy Spread

1. Gaussian drive/main beams charge distribution with relative rms spread of 0.1%

"White noise" jitter of the charge along the drive/main beams

Drive Beam Charge Spread Effect

Constraint of 0.1% charge spread in <u>drive beam</u> (D. Schulte, CERN) is ok for the energy spread minimization

Main Beam Charge Spread Effect

Constraint of 0.1% charge spread in <u>main beam</u> (D. Schulte, CERN) is ok for the energy spread minimization

Conclusions

- 1. Developed pulse shape optimization method allows to reach acceptable level of 0.03% in the main beam energy spread
- 2. Performing optimization for the different possible buncher switching times and injection phases the same CLIC acceptable level of energy spread is reached
- 3. Randomly distributed along the bunch train 0.1% rms spread charge jitters in drive and/or main beams don't increase the final energy spread in the main beam

Thank You for the Attention!