Feedback

Conclusions

Beam current stability in CTF3

Guido Sterbini

Acknowledgments: A. Andersson, S. Bettoni, R. Corsini, D. Schulte and CTF3 team

IWLC2010, October 20, 2010

Beam current stability in CTF3

Feedback

Conclusions

Outline

1 Motivations for the study.

Methods. 2

Beam current feedback in CTF3. 3

Conclusions. 4

Feedback

Conclusions

Outline

1 Motivations for the study.

Methods.

Beam current feedback in CTF3.

Conclusions.

CLIC luminosity and DB current stability

$$\frac{\Delta \mathcal{L}}{\mathcal{L}} = 0.01 \left(\frac{\sigma_I}{0.75 \ 10^{-3} \ I} \right)^2 + \dots [\text{D. Schulte et al.}]$$

- The luminosity loss is proportional to the square of the DB current jitter $\Rightarrow \frac{\sigma_l}{l} < 0.75 \ 10^{-3}$.
- Can we meet this specification in CTF3?

Conclusions

Outline

1 Motivations for the study.

2 Methods.

Beam current feedback in CTF3.

Conclusions.

Our observables

- We studied the beam current jitter before the recombination (13 LINAC BPMs).
- Our observable is the total current of the pulse, *I*, i.e., for each pulse and BPM we get a scalar number.

Our observables

- We studied the beam current jitter before the recombination (13 LINAC BPMs).
- Our observable is the total current of the pulse, *I*, i.e., for each pulse and BPM we get a scalar number.
- The pulse period is 1.2 s. Our statistics is on 500-600 pulses (\approx 10 min).

time, not to scale

Measurements I

- The observed current jitter has a low frequency component.
- $\Delta I/I \approx 2 \ 10^{-3}$ along the linac.

Conclusions

Measurements I

- The observed current jitter has a low frequency component.
- $\Delta I/I \approx 2 \ 10^{-3}$ along the linac.
- From correlation studies we conclude that the BPM precision is $\approx 0.3 \ 10^{-3}$.
- → We observe a physical jitter and not the BPM's noise.

Measurements II

- AFTER the replacement of the power supply of the cathode filament with a more stable one, the beam current jitter of the linac was reduced by about a factor 2 (to a standard deviation of 0.9 10³)
- Still a low frequency drift. A feedback can cure it!

Feedback

Conclusions

Outline

1 Motivations for the study.

Methods.

3

Beam current feedback in CTF3.

Conclusions.

Motivations

Methods

Feedback

Conclusions

The proposed feedback

The FB reads the beam current and control it by changing the cathode voltage of the electron gun. This is a slow inter-pulse feedback!

IWLC2010 - Guido Sterbini - Beam current stability in CTF

The FB "frequency response" (simulated)

Feedback

- Keeping in mind the limitations of the present hardware (repetition rate, saturation, discretization) and signal routing (delays), the optimized gain of our controller is 25.
- We can demagnify by \approx 4 the low frequency jitter (< 4 mHz) whereas we increase up to a factor \approx 1.5 the jitter at 30 mHz.
- With the optimal gain the simulations show that we can reduce the current jitter to 6 10⁻⁴.

Conclusions

Measurements with the FB

After implementing the feedback in CTF3, we measured a beam stability of 6.2 10^{-4} .

Conclusions

Measurements with the FB

After implementing the feedback in CTF3, we measured a beam stability of 6.2 10^{-4} (instead of 9 10^{-4}). But still a lot of HF noise...from where?

The source of the high frequency noise

- Investigation are on going...
- We analyze (1) (parasitically) the noise of the different input and (2) its transfer function with the beam current.
- I.e., from this kind of measurements we can exclude that the EGUN's cathode is responsible for the HF noise.

Conclusions

14 / 15

Outline

1 Motivations for the study.

Methods.

Beam current feedback in CTF3.

Conclusions

- (The DB current stability is directly related to CLIC luminosity: $\Delta {\cal L}/{\cal L} \propto (\sigma_I/I)^2)$
- We measure and improve the beam stability in the CTF3 linac.

$$\underbrace{\frac{\sigma_I}{T} = 20 \ 10^{-4}}_{T} \longrightarrow \underbrace{\mathsf{HS}}_{T} \longrightarrow \underbrace{\frac{\sigma_I}{T} = 9 \ 10^{-4}}_{T} \longrightarrow \underbrace{\mathsf{FB}}_{T} \longrightarrow \underbrace{\frac{\sigma_I}{T} = 6.2 \ 10^{-4}}_{T}$$

• In CTF3 linac the CLIC spec on I_B jitter has been achieved.

• The BPM precision is
$$\approx 3 \ 10^{-4}$$
.

- Presently, the EGUN's cathode contributes marginally to the I HF jitter.
- Our next step is to analyze the stability of the beam current after the recombination.

Conclusions

- (The DB current stability is directly related to CLIC luminosity: $\Delta {\cal L}/{\cal L} \propto (\sigma_I/I)^2)$
- We measure and improve the beam stability in the CTF3 linac.

$$\underbrace{\frac{\sigma_I}{T} = 20 \ 10^{-4}}_{T} \longrightarrow \underbrace{\mathsf{HS}}_{T} \underbrace{\frac{\sigma_I}{T} = 9 \ 10^{-4}}_{T} \longrightarrow \underbrace{\mathsf{FB}}_{T} \underbrace{\frac{\sigma_I}{T} = 6.2 \ 10^{-4}}_{T}$$

- In CTF3 linac the CLIC spec on I_B jitter has been achieved.
- The BPM precision is $\approx 3 \ 10^{-4}$.
- Presently, the EGUN's cathode contributes marginally to the I HF jitter.
- Our next step is to analyze the stability of the beam current after the recombination.

THANK YOU!