Overview of the DB accelerator complex

B. Jeanneret CERN/ABP WG6 at IWLC_2010

Beam as requested by Decelerators

AIM : produce a gradient of 100 MV/m at $f_0=12$ GHz for the Main Beam

- Beam energy E=2.37 GeV
- Beam current I = 100 A
- 2×24 such trains for 3 TeV
- 2×5 0.5 TeV

Tolerances on Drive Beam for luminosity $\Delta L/L = 1\%$ (D. Schulte)

Variable		Coherent (24 trains)	Individual trains
Phase@12GHz	σ (φ)	0.2°	0.8°
Current	σ (I)/I	7.4×10 ⁻⁴	2.2×10 ⁻³
Bunch length	$\sigma (\sigma_z)/\sigma_z$	1.1×10 ⁻²	3.2×10 ⁻²

The way to produce these beams

Frequency Multiplication

- Producing short pulses (243 ns) with klystrons is not efficient
- Lower fequency klystrons are more efficient
- No gun can produce a current $I = q_b \times f_0 = 100A$
- The CLIC way :
 - Drive Beam Linac : 1 GHz klystrons, 0.5 GHz bunch spacing
 - Use FM (DL, CR1,CR2) to interleave 24 pulses \rightarrow 12 GHz
 - Produce 24 trains in continuous to feed each decelerator
 - \rightarrow Pulse length in DB Linac : Dt = 24×24×237ns = 140 µs
 - Use full beam loading for maximum efficiency

Drive Beam Combination Steps

f_{beam} = 4 * 3 * 2 * f_{buncher}

Optimized Pulse Shape for the Full Bunch Response in PETS

Picture borrowed from O. Kononenko (see his talk)

Beam production

- Gun must produce $n = 2922 \times 24 \times 50 = 3.5 \times 10^6$ bunches/s (current I = 4A)
- Must alternate trains with odd/even bunches
- Odd/even bunch structure must be programmable inside the rise-time period (recipe by Olexsiy, see former slide).
- Timing tolerance for the beam at the entrance of the DB Linac:
 - $\quad \Delta \varphi_1 = 0.1^{\circ} @1 GHz \Leftrightarrow 85 \ \mu m \Leftrightarrow 0.3 \ ps$
- Timing at 12 GHZ (synchonisation DB/MB & MB e⁺/e⁻) :
 - − $\Delta \varphi_2 = 0.2^{\circ}@12GHz \Leftrightarrow 14 \,\mu\text{m} \Leftrightarrow 46 \,\text{fs} (46 \times 10^{-15} \,\text{s})$
 - Need active phase feed-back after each-turnaround to match $\Delta \phi_1$ and $\overline{\Delta \phi_2}$ see t
 - Need (most likely) a site-wide timing network offering this precision
 - \rightarrow Dedicated session in WG2+6+7+8 yesterday

Can a thermo-ionic gun, followed by a bunching System, do this ?

Will a reliable laser gun exist ?

See talks by Simona and Marta

DB Linac

- Dedicated session after coffee with WG4
- RF system : studied by E. Jensen and R. Wegner
- Modulators : pre-study by D. Nisbet and D. Siemaszko
- Optics and beam dynamics : A. Aksoy
- Overall dimensions and power needs at hand
- Still much work ahead

Top view of the Linac building

End-view of the linac building

More on tolerances for the DB LInac

- Timing tolerance at the entrance of the DB Linac :
 - Δφ = 0.1°@1GHz ⇔ 85 μm ⇔ 0.3 ps
 - This to ensure $\Delta \phi_{DB/MB} = 0.2^{\circ}@12GHz$ in the Main Tunnel
 - The factor $\sim\!10$ is must be granted by the active feed-back at each turn-around in the Main tunnel
- As for the DB Linac itself , in the segment before compression:
 - Gradient : $\Delta G/G < 2 \times 10^{-3}$ coherent over 100 klystrons, $< 2 \times 10^{-2}$ per klystron
 - Phase : $\Delta \phi = 0.05^{\circ}$ to avoid undue bunch lenghtening (A. Aksoy, D. Schulte)
 - This in turn for modulator : $\Delta P/P < 10^{-5}$
- The last two values are certainly a nice challenge. They require much attention in the near future

The DB Linac complex in the landscape

Loop for phase- feed-back, compression

Frequency Multiplication & transport to tunnel - I

Ring Or Line	Length Or Circum	Δ
DLS	142 , 193	
DL1	215	73
DL2	339	146
CR1	292	
CR2	438	
TA	150	

- Changes 2010 :
 - Twice longer lines (DL1, CR1,TA) to allow for good isochronicity, achromaticity and flexibility
 - Addition of a second Delay Line for energy scan between 1 & 3TeV (longer trains at lower energies)
 - Endorsed by the Tech. Comm. and Civil Engineering

Frequency Multiplication & transport to tunnel - II

- Strategy and work for CDR
 - Fully work-out optics of CR1 (see talk by Piotr)
 - With now larger radii in DL and TA's , good optics can be derived from CR1 to other rings/lines
 - A magnet catalogue is at hand , much detailed for all the lines (talk by Alexey Vorozhtsov wed.)
 - It was used for the power and cost estimate exercise (CDR)
 - It will be much useful for any variational work
 - Concentrate on still open issues
 - Vacuum, SR, CSR, collective effects
 - Options for power & cost reduction

Synchrotron Radiation impact on hardware

- Spec for ion instabilities : p = 10⁻¹⁰ Torr
- As of today : not studied

Options for Dipoles & Vacuum vs. SR

- Super-conducting super-ferric magnets
 - s.c coils, but classical C-yoke for field shaping
 - More expensive, but power ÷5
 - Cost savings with time
 - Cold pipe (~20-30K) \rightarrow Thermal expansion vanishes
 - Another vacuum regime to study
- Classical resistive magnets
 - Berylium pipe at SR-impact
 - Transparent to 6 KeV X-rays
 - SR absorbed in water behind
 - Be disliked for safety reasons ⇔negotiable ?

 \rightarrow Ageing solved

SR impact on beam

- $\Delta E_{turn} \rightarrow different E$ inside trains through CR1 and CR2
- Converts to Δz after final compression chicane

- Annoying for synchronisation with irregular time structure
- Beyond a certain spread , reduces PETS efficiency
- To be re-worked with new optics
- Consider s.c. super-ferric magnets in CR1, CR2 (minimise CSR, optimise SR)

Collective effects

 $\Delta x \sim \sqrt{\frac{n_{\text{bunch}} < \beta > 1}{\sigma_{\text{olso}}}} \frac{1}{r^3}$

- Ion instabilities : hard constraints on vacuum
 - DB Linac : $p < 5 \times 10^{-11}$ Torr Not Studied
 - FM, transport : p < 10⁻¹⁰ Torr Not Studied
- Multi-bunch resistive wall instabilities
 - The deformation of the trajectory of the rear bunches of a train goes like
 - Need large pipe radius

- With large pipe radius, the energy loss is similar to SR loss
- Small SR losses → low B, large L for constant BL
- Small CSR losses → short L
- So, screening CSR would help , i.e. allow to optimise SR
- But CSR & n-bunch instabilities are in conflicts
 - Another reason to look at super-ferric magnets
 - Better conductivity would allow for smaller radius \rightarrow screening , ...

With copper chamber

Line	R [mm]	
DL,CR	40	
LTL	100	
ТА	20	

Operability

Future (post-CDR)

- Many oustanding issues to be worked-out
- Can CTF3 validate the requirements for the CLIC Drive Beam ?
- If not, what do we need to do so ?
- See talks by Roberto and Frank this afternoon

My worries : Mismatch between work to do & manpower

• Activity scattered in too many 'sub-projects'

CTF3	CTF3+	CLIC-500GeV	KLIC	ILC
	CTF3++	CLIC-3TeV		
	CLIC0	CLIC-var-E		

An item for the round-table this afternoon ...