

Phase stability of the CTF3 beam

prepared by Alexey Dubrovskiy CERN BE/OP

IWIC

10/20/2010

Outline

- CTF3 drive beam layout
- Short-term RF stability
- Improvements in the long-term RF stability
- Beam phase measurements
- On-going activities related to the beam phase stability
- Conclusions

CTF3 Linac layout

IWLC

10/20/2010

Static RF variation

Klystron RF					
Klystron	Α	$\Delta A/A$			
	MW	%			
MKS02	34.2	1.5%			
MKS03	35.5	3.4%			
MKS05	36.7	6.2%			
MKS06	33.2	7.6%			
MKS07	22.8	2.9%			
MKS11	28.5	4.0%			
MKS12	30.3	4.5%			
MKS13*	29.1	5.6%			
MKS15	30.9	4.1%			

Compressed RF after 3dB splitter					
Klystron	$\Delta \mathbf{P}$	Α	$\Delta A/A$		
	deg	MW	%		
MKS03	11.8	33.9	2.2%		
MKS05	4.6	36.9	1.3%		
MKS06	10.3	34.2	1.5%		
MKS07	9.9	22.4	3.8%		
MKS11	9.9	28.4	6.4%		
MKS12	11.4	28.8	11.4%		
MKS13*	8.3	28.5	2.7%		
MKS15	7.3	25.0	1.4%		

Effective power				
Klystron	Α	$\Delta A/A$		
	MW	%		
MKS03	33.8	1.7%		
MKS05	36.9	1.4%		
MKS06	34.1	2.4%		
MKS07	22.4	5.0%		
MKS11	27.8	9.0%		
MKS12	28.7	9.0%		
MKS13*	28.5	2.8%		
MKS15	24.9	1.6%		
Total	475	2.8%		

The beam length = 1200 ns^{480}

Most of RF compressors reduce the static relative power variation. The static phase variation is about 5–10 deg. The total effective RF power production along the pulse is about 2.8%.

* MKS13 is out of order in 2010

RF short-term variation

Most of RF compressors reduce the phase noise. The noise the pulse. The total effective RF power production is smooth reduced); and the maximum jitter along the pulse is <0.2%.

* MKS13 is out of order in 2010

of the total effective power becomes smaller to the end of \ge and stable; the static variation is about 3% (it can be

MKS03 RF stability

- The pulse-to-pulse phase stability for a fixed 10 ns time slice is 0.07 deg. The CLIC requirement is 0.05 deg.
- ▶ The pulse-to-pulse power stability is 0.3%. The CLIC requirement is 0.2%. 🌢
- \succ The power and the phase variation is weakly correlated at 4 MHz. \diamondsuit
- The phase variation is uncorrelated after a few μs.
- The correlation of the RF phase variation at high frequencies (20 100 MHz) and at ≈2 MHz is significant, which indicates the possibility to improve the klystron stability by using a fast phase feedback.

 D. Schulte et al., "Status of the CLIC Phase and Amplitude Stabilisation Concept", LINAC10 (2010)
 D. Schulte et al., CLIC-Note-598 (2004)

IWLC 10/20/2010

A. Dubrovskiy

Compressed RF pulse Variation is stabilized

Compressed RF drift can be explained as a shift of the resonance frequency of the compressor cavity, which is sensitive to the cavity temperature.

The temperature stabilization system became operational in 2010.

[1] A.Dubrovskiy, F.Tecker, "RF Pulse Compression Stabilization at the CTF3 CLIC Test Facility", IPAC2010

10/20/2010

IWLC

cllc

A. Dubrovskiy

10/20/2010

A. Dubrovskiy

TBTS Drive Beam phase stability

The phase jitter along the pulse is < 4 deg.
The phase offset pulse-to-pulse jitter is about 20 deg.

The phase jitters along the pulse and pulse-to-pulse do not correlate with the beam and the jitters look to be a measurement noise.

Conclusion: the measured beam phase jitter is mainly a measurement noise and the phase measurement must be improved.

IWLC

Phase measurement and feed-forward stabilization

IWLC

10/20/2010

Accurate phase measurement along the pulse and pulse-to-pulse jitter

[1] G. Morpurgo, "R&D program for RT phase feedbacks", 5th CLIC-ACE (2010)

10/20/2010

Conclusions

✓ CTF3 short-term RF stability allows to produce the drive beam with a small phase jitter.

✓ RF stability of the klystron MKS03 is very close to the CLIC requirements.

✓ The long-term beam phase stability has been significantly improved last year by the RF stabilization systems, low-level and high-level RF updates.

✓ In spite of non-square RF waves the beam was combined with a small phase variation along the pulse due to RF optimizations and optics improvements. This result has been confirmed by phase measurements in TBL and TBTS.

✓ More studies on the beam phase stability after the combiner ring are required.

More precise beam phase measurements are need.