Simulation Studies regarding Beam-Beam Background in a CLIC Detector

André Sailer

CERN-PH-LCD, Humboldt-Universität zu Berlin

International Workshop on Linear Colliders October 21, 2010

IWLC2010, October 21, 2010

A. Sailer: Beam-Beam Background at CLIC

Contents

- 1 Beam-Beam Background
- 2 Beam-Beam Background in CLIC_ILD
- 3 Beam-Beam Background in CLIC_SiD

4 Summary

Beam-Beam Background

- Beam-beam background simulated with GUINEAPIG
- Nominal $\sqrt{s} = 3$ TeV CLIC
- $3 \cdot 10^5$ incoherent particles/BX
- $6 \cdot 10^8$ coherent particles/BX
 - Minimal inner acceptance for BeamCal 10 mrad
- Only incoherent particles simulated in full GEANT4 (MOKKA & SLIC) simulations

CLIC_ILD: Simulation Model

- GEANT4 9.3p1, MOKKA-07-05, rangeCut 5 μm, QGSP_BERT_HP
- Current CLIC_ILD detector model
 - 3 double layer vertex detector
 - \star Z = ±130 mm
 - * R = 31, 44, 58 mm
 - 4 T magnetic field (no AntiDID)
 - Forward region as seen on right
 - "pointing" conical beam pipe (tracks in forward tracking pass only cylindrical beam pipe region)

CLIC_ILD: Background Rate

- Presented at LCWS10, Beijing
- Hit rate: 0.04 Hits/mm²/ns when back-scatters hit VXD
- Back-scatters originate in BeamCal and beam-tube inside BeamCal
- Mostly low energy electrons and photons

CLIC01_ILD

CLIC_ILD: Geometry Changes I

CLIC01_ILD: New BeamCal

IWLC2010, October 21, 2010

CLIC_ILD: Geometry Changes II

- Later changed the conical beam-pipe from beryllium to iron
- Increased thickness of the conical beam-pipe (1.2 mm in *R*)
- Reduce background from 0.03 to 0.02 Hits/mm²/ns
- Using this model in following slides

Current CLIC_ILD

IWLC2010, October 21, 2010

CLIC_ILD: Vertex Radius vs. Background I

- Hit density in vertex detector impacts pattern recognition, tracking, need fast time stamping, maybe requires multi-hit capability
- Increase radius to reduce occupancy, which allows to soften technological requirements
- Simulated in current CLIC_ILD, moving whole vertex detector outward
- Length of VXD not changed

Hits on the first layer for the different inner radii. Overlaid for all the different geometries.

CLIC_ILD: Vertex Radius vs. Background I

- Hit density in vertex detector impacts pattern recognition, tracking, need fast time stamping, maybe requires multi-hit capability
- Increase radius to reduce occupancy, which allows to soften technological requirements
- Simulated in current CLIC_ILD, moving whole vertex detector outward
- Length of VXD not changed

Re-binned histogram, hot spots are corresponding to hole for outgoing beam pipe in BeamCal

CLIC_ILD: Vertex Radius vs. Background II

- Direct hits (t < 10 ns) are reduced with increased radius
- Hits from back-scatters are not falling as fast
- Still significant contribution from back-scattering hits

CLIC_ILD: Vertex Radius vs. Background III

- Integrated all hits for each bunch crossing
- Hit rate falls with increasing radius

CLIC_ILD: Magnetic Field vs. Background

- Now looking at default vertex radii: R = 31 mm etc.
- Vary B-field = 3, 4, 5 T
- Direct hits (t < 10 ns) are reduced with increased B-field
- Hits from back-scatters are not reduced by B-field

CLIC_ILD: Beam pipe vs. Background I

- Back-scattering particles have to pass through conical part of beam pipe
- Increase depth to absorb these particles
- Changed conical beam pipe material to tungsten
- Most back-scatters removed
- Have to try with more realistic beam pipe material

CLIC_ILD: Beam pipe vs. Background II

IWLC2010, October 21, 2010

A. Sailer: Beam-Beam Background at CLIC

CLIC_ILD: Background Hit Density Summary

Model	${\rm Hits}/{\rm mm}^2/{\rm ns}$
Beijing	0.04
New BeamCal	0.03
Iron beam pipe	0.02
"Tungsten beam pipe"	0.01

Iron beam pipe is in the current detector model. More work required.

CLIC_SiD Simulation Model

- GEANT4 9.3p1, SLICv2r8p4, rangeCut 1 mm, QGSP_BERT
- Current CLIC_SiD detector model
 - ► 5 single layer vertex detector
 - \star Z = ±100 mm
 - * R = 27, 38, 51, 64, 77 mm
 - ► 5 T magnetic field (no AntiDID)
 - ► Almost "pointing" conical beam pipe

CLIC_SiD: Background during one BX (C.Grefe)

 First simulations for CLIC_SiD show same features as CLIC_ILD background simulations

A. Sailer: Beam-Beam Background at CLIC

CLIC_SiD: Background for one Train (C.Grefe)

- Rise in hit density once back-scatters come back from BeamCal
- Similar to first results for CLIC_ILD
 - Work in progress
 - Optimize forward region, materials

Summary

- Incoherent Pairs can have a negative impact on the detector
 - Direct hits depend on B-field and VXD Radius
- Proper forward region design can reduce back-scatters into the detector
- Further reduction of back-scatters through beam-pipe design possible
- Hit density in CLIC_ILD reduced to 0.02 Hits/mm²/ns (from 0.04)
 - Further reduction possible
- Hit density in CLIC_SiD currently at 0.04 Hits/mm²/ns
 - ► Further reduction possible

Backup Slides

Forward Regions and VXDs

	CLIC_SiD	CLIC_ILD
VXD Layout	5 Single	3 Double
Innermost VXD Radius	27 mm	31 mm
B-Field	5 T	4 T
LumiCal Z _{Start}	1.8 m	2.5 m
LumiCal R _{Inner}	64 mm	100 mm
BeamCal Z_{Start}	2.8 m	2.9 m
BeamCal R _{Inner}	28 mm	32 mm

Coverage of very forward calorimeters very similar by design

CLIC_ILD: Azimuthal Distribution of Background

- Current CLIC_ILD baseline model
- For first layer hot spots only factor 2 above average

CLIC_ILD: Azimuthal Distribution of Background

- "Tungsten beam pipe"
- For first layer hot spots only factor 1.5 above average

CLIC_ILD: Magnetic Field vs. Background II

- Right: Only hits from back-scatters (t > 10 ns)
- Hits from back-scatters on VXD not homogeneously distributed

CLIC_ILD: Magnetic Field vs. Background III

IWLC2010, October 21, 2010