Event Generation of

 $\gamma\gamma \rightarrow hadrons$

Tim Barklow
SLAC
October 21, 2010

Measured $\sigma(\gamma\gamma \rightarrow hadrons)$ from PDG

Model for $\sigma(\gamma\gamma \to hadrons)$ used at SLAC

SLAC Model vs. PYTHIA Model

Simulating Hadronic Events

- WHIZARD or comparable is used to simulate virtual photon flux
- Guinea-Pig simulates beamstrahlung flux.
- Total hadronic cross section given by a canonical formula for Ecm > 1.5 GeV and by a constant 490 nb for 0.3 < Ecm < 1.5 GeV
- PYTHIA is used to model low and high-pt hadronic events for Ecm > 2 GeV
- Isotropic production of 2, 3, or 4 pions for 0.3<Ecm < 2 GeV. ←SLAC samples only

PYTHIA Simulation of $\gamma\gamma \rightarrow hadrons$

- Both CERN and SLAC use MSTP(14)=10 which means a mixture of classes 0,2,3,5,6,7:
 - 0) Both photons are pointlike (direct) in $\gamma\gamma o f \overline{f}$
 - 2) Both photons are VMD-like
 - 3) Both photons are anomalous (General VMD-like)
 - 5) One photon direct, the other VMD-like
 - 6) One photon direct, the other anomalous
 - 7) One photon VMD-like, the other anomalous

$W_{\gamma\gamma}$ Distribution at CLIC

Samples of $\gamma\gamma \rightarrow hadrons$ with <<1 ev/bx

- PYTHIA with MSTP(14)=10 is a mixture of classes 0,2,3,5,6,7:
 - 0) Both photons are pointlike (direct) in $\gamma\gamma \to f\bar{f}$
 - 2) Both photons are VMD-like
 - 3) Both photons are anomalous (Generalized VMD-like)
 - 5) One photon direct, the other VMD-like
 - 6) One photon direct, the other anomalous
 - 7) One photon VMD-like, the other anomalous
- Most events in inclusive overlay samples have small $W_{\gamma\gamma}$. Events with larger $W_{\gamma\gamma}$ appear with low statistics or are missing altogether if there was no event overlay (the usual case for the ILC LOI).
- Independent class 0 samples with $W_{\gamma\gamma} > 10~{\rm GeV}, P_T > 4~{\rm GeV}$ were produced for the ILC LOI as part of SM bkgd generation.
- Class 2,3,5,6,7 events only appeared in the LOI overlay sample, however. Current ILC/CLIC studies may want to generate class 2,3,5,6,7 samples with $W_{\gamma\gamma} > 10~{\rm GeV}, P_T > 4~{\rm GeV}$

γγ-> Hadron BACKGROUND EVENTS

Ozgur Sahin- Dominik Dannheim

- 2010 Schulte Sample
 - Generated with PYTHIA / GUINEA-PIG Monte Carlo generators
 - Number of events: 67 587
 - Invariant Mass Cut: 2 GeV
 - Event/BX:3.2
- 2010 Barklow Sample
 - Generated with PYTHIA / GUINEA-PIG (WHIZARD) Monte Carlo generators
 - Number of events: 418 888
 - Invariant Mass Cut: ~0.27 GeV
 - Event/BX:4.1

Polar Angle (Charged)(P_T > 0.25 GeV & $|\cos \theta|$ < 0.995) θ > 5.73°

Momentum (Charged)(P_T > 0.25 GeV & |cos θ | < 0.995) θ > 5.73°

Nb Particles (per BX) (P_T > 0.25 GeV & $|\cos\theta|$ < 0.995) θ > 5.73°

Comparison CERN vs SLAC Samples

	Schulte 2010	Barklow 2010
Invariant Mass Cut	2 GeV	~0.27 GeV
Events per Bunch Crossing	3.2	4.1
#Particles (charged) per Bunch Crossing cos θ < 0.92 & P_T > 0.25 GeV (θ >23.07°)	5.9 (4.2)	5.6 (4.1)
#Particles (charged) per Bunch Crossing cos θ < 0.98 & P_T > 0.25 GeV (θ >11.49°)	21.9 (14.3)	23.1 (15.2)
#Particles (charged) per Bunch Crossing cos θ < 0.995 & P _T > 0.25 GeV (θ >5.73°)	28.1 (18.4)	29.0 (19.1)
Energy per Bunch Crossing cos θ < 0.92 & P _T > 0.5GeV (θ >23.07°)	7.4 GeV	6.4 GeV
Energy per Bunch Crossing cos θ < 0.98 & P_T > 0.25 GeV (θ >11.49°)	25.7 GeV	24.6 GeV
Energy per Bunch Crossing cos θ < 0.995 & P_T > 0.25 GeV (θ >5.73°)	49.5 GeV	45.1 GeV

EFFECT OF DIFFERENT INVARIANT MASS CUTS

Invariant Mass Cut	$ \cos \theta < 0.995$ & $P_T > 0.25 \text{ GeV}$ $(\theta > 5.73^{\circ})$	Schulte 2010	Barklow 2010
~0.27 GeV	Energy/ BX	-	45.1 GeV
	# Particles / BX	-	29.0
2 GeV	Energy/ BX	49.4 GeV	44.5 GeV
	# Particles / BX	28.1	28.4
5 GeV	Energy/ BX	48.4 GeV	43.2 GeV
	# Particles / BX	27.5	27.6
10 GeV	Energy/ BX	47.0 GeV	41.6 GeV
	# Particles / BX	26.6	26.6

Ozgur Sahin

56 hadronic events integrated over 7.3 ns at CLIC (5% of train) no pt cut; Ecm down to $\pi^+\pi^-$ threshold 660 GeV detected energy 420 detected charged tracks

5.0% train (56 events) at CLIC integrated over 7.3 ns660 GeV detected energy420 detected charged tracks

1.6% train (19 events) at CLIC integrated over 2.5 ns220 GeV detected energy140 detected charged tracks

Summary

- $\gamma\gamma \to hadrons$ events for $W_{\gamma\gamma} > 2$ GeV are simulated using Guinea-Pig + PYTHIA. On average these events contribute 50 GeV energy and 30 particles per bunch crossing at CLIC. Good detector timing required to reduce the impact of these events on physics analyses.
- Recent 3 TeV γγ → hadrons samples generated at CERN (Schulte) and SLAC (Barklow) show good agreement in various distributions
- Independent high pt pointlike $\gamma\gamma \to q\overline{q}$ background samples should be augmented with high pt resolved photon background samples.